Math, asked by AasthaSingh18, 1 year ago

Solve quadratic equation :

 \sqrt{3} x {}^{2}  + 10x - 8 \sqrt{3}  = 0

Answers

Answered by Anonymous
8
нєуα

нєяє ιѕ тнє αиѕωєя

gινєи :-

√3χ² + 10χ - 8√3

ву ѕρℓιттιиg тнє мι∂∂ℓє тєям,

=> √3χ² + 12χ - 2χ - 8√3

=> √3χ (χ + 4√3) - 2 (χ + 4√3)

=> (√3χ - 2)(χ + 4√3)

нσρє тнιѕ нєℓρѕ.
Answered by Anonymous
3


HEY THERE!!



Question;

 \sqrt{3} x {}^{2} + 10x - 8 \sqrt{3} = 0

Method Of Solution;

√3x²+10x-8√3 = 0

√3x²+12x-2x-8√3 = 0

√3x(x+4√3) -2(x+4√3) = 0

•°• (x+4√3)(√3x-2) = 0

Roots of Quardratic Equation!


•°• (x+4√3)(√3x-2) = 0

(x+4√3) =0

•°• x = -4√3

Also,

(√3x -2)=0

√3x = 2

•°• x =2/√3

Additional Answer!!



 \huge{ \bold{ \tiny{rationalizing \:  the \:  denominator}}}
x =  \frac{2}{ \sqrt{3} }  \times  \frac{ \sqrt{3} }{ \sqrt{3} }  \\  \\ x =  \frac{2 \sqrt{3} }{3}



Hence, Roots of this Quardratic Equation;
x = 2√3/ 3 and -4√3





Similar questions