Math, asked by Sweetykajal, 7 months ago

solve ques 6 fast i will warm brainleist​

Attachments:

Answers

Answered by ArpitMishra506
1

.

.

.

.

HOPE THIS HELPS YOU

.

.

.

.

PLEASE MARK AS BRAINLIEST AND FOLLOW ME TOO

Attachments:
Answered by gugan64
13

Answer:

\huge\purple{\sf{ \underline{{♧given\ \: : }}}}

 \purple \bigstar \bf \frac{5}{ \sqrt{3} +  \sqrt{2}  }

\huge\purple{\sf{ \underline{{♧to \: find\ \: : }}}}

  \purple\bigstar\bf \: {rationalising \: factor}

\huge\purple{\sf{ \underline{{♧solution\ \: : }}}}

 \sf \to \frac{5 \times  } { \sqrt{3}  +  \sqrt{2  }   \times }    \frac{ \sqrt{3} -  \sqrt{5}  }{ \sqrt{3} -  \sqrt{5}  }

 \sf \to \frac{5 \sqrt{3} - 5 \sqrt{5}  }{   {( \sqrt{3} )}^{2}  -  {( \sqrt{5} })^{2}}

 \sf \to \frac{5 \sqrt{3} - 5 \sqrt{5}  }{3 - 5}

 \purple \to \sf  \frac{5 \sqrt{3} - 5 \sqrt{5}  }{ - 2}

 \sf{ \purple {\underline {\underline{{note \ \: : }}}}}

 \sf(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \purple \bigstar \sf we \: must \: use \: this \: identity

 \sf \:  \:  \:  \:  to \: rationalise \: the \:  denominator

 \sf{ \purple{ \underline{ \underline{{additional \: information \ \: : }}}}}

  \sf {(x + y)}^{2}  =  {x}^{2}  + 2xy +  {y}^{2}

 \sf {(x - y)}^{2}  =  {x}^{2}  - 2xy +  {y}^{2}

 \sf(x + y)(x - y) =  {x}^{2}  -  {y}^{2}

 \sf(x + a)(x + b) =  {x}^{2}  +x(a + b) +  ab

  • Please mark as brainliest
Similar questions