Math, asked by VijayaLaxmiMehra1, 1 year ago

solve ques in the attachment

Coordinate Geometry

Attachments:

Answers

Answered by siddhartharao77
9

Answer:

Area of ΔADE = (1/9) * Area of ΔABC

Step-by-step explanation:

Given vertices are A(4,6), B(1,5) and C(7,2).

Given: AD/AB = AE/AC = 1/3.

⇒ (AD)/(AD + DB) = 1/3

⇒ 3AD = AD + DB

⇒ 2AD = DB

⇒ AD : DB = 1 : 2.

Also, AE : CE = 1;2


Now,

(i)

Given D divides AB in the ratio 1:2.

Coordinate of D = {1(1) + 2(4)/1+3, 1(5)+2(6)/1+3}

                           = {3, 17/3}



(ii)

Given E divides AC in the ratio 1:2

Coordinate of E = {1(7)+2(4)/1+3, 1(2)+2(6)/1+3}

                          = {5,14/3}


We know that Area of triangle = (1/2)[x₁(y₂-y₃)+x₂(y₃-y₂)+x₃(y₂-y₁)]

(iii)

Area of ΔADE = 1/2[4(17/3 - 14/3) + 3(14/3 - 6) + 5(6 - 17/3)]

                       = 1/2[4 - 4 + 5/3]

                       = 1/2[5/3]

                       = 5/6 units.


(iv)

Area of ΔABC = 1/2[4(3) + 1(-4) + 7(1)]

                       = 1/2[12 - 4 + 7]

                       = 15/2 units.



(v)

Area of ΔADE/Area of ΔABC = 5/6 * 2/15

                                                  = 1/9


Area of ΔADE = (1/9) * Area of ΔABC.


Hope this helps!

Answered by Siddharta7
4

Step-by-step explanation:

vertices are A(4,6), B(1,5) and C(7,2).

AD/AB = AE/AC = 1/3.

(AD)/(AD + DB) = 1/3

3AD = AD + DB

2AD = DB

AD : DB = 1 : 2.

Also, AE : CE = 1;2

Now,

Given D divides AB in the ratio 1:2.

Coordinate of D = {1(1) + 2(4)/1+3, 1(5)+2(6)/1+3}

= {3, 17/3}

Given E divides AC in the ratio 1:2

Coordinate of E = {1(7)+2(4)/1+3, 1(2)+2(6)/1+3}

= {5,14/3}

Area of ΔADE = 1/2[4(17/3 - 14/3) + 3(14/3 - 6) + 5(6 - 17/3)]

= 1/2[4 - 4 + 5/3]

= 1/2[5/3]

= 5/6 units.

Area of ΔABC = 1/2[4(3) + 1(-4) + 7(1)]

= 1/2[12 - 4 + 7]

= 15/2 units.

Area of ΔADE/Area of ΔABC = 5/6 * 2/15

= 1/9

Area of ΔADE = (1/9) * Area of ΔABC

Similar questions