Math, asked by Anonymous, 5 hours ago

Solve question no. 11


No spam!! ​

Attachments:

Answers

Answered by sandiv2022
1

Step-by-step explanation:

refer above one!

hope it helps..

Attachments:
Answered by mathdude500
7

Given Question

 \sf \: x =  \sqrt{ {a}^{ {sin}^{ - 1} t} } \: and \: y = \sqrt{ {a}^{ {cos}^{ - 1} t} }, \: prove \: that \: \dfrac{dy}{dx} \:  =  \:  -  \:  \dfrac{y}{x}

 \green{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:x =  \sqrt{ {a}^{ {sin}^{ - 1}t } }  -  -  - (1)

and

\rm :\longmapsto\:y =  \sqrt{ {a}^{ {cos}^{ - 1}t } }  -  -  - (2)

On multiply equation (1) and (2), we get

\rm :\longmapsto\:xy =  \sqrt{{a}^{ {cos}^{ - 1}t } }  \times  \sqrt{{a}^{ {sin}^{ - 1}t } }

\rm :\longmapsto\:xy =  \sqrt{{a}^{ {cos}^{ - 1}t }  \times {a}^{ {sin}^{ - 1}t } }

\rm :\longmapsto\:xy =  \sqrt{{a}^{ {cos}^{ - 1}t  +  {sin}^{ - 1} t} }

We know,

 \purple{\rm :\longmapsto\:\boxed{\tt{  {sin}^{ - 1}x +  {cos}^{ - 1}x =  \frac{\pi}{2}}}}

So, using this, we get

\rm :\longmapsto\:xy =  \sqrt{\bigg({a}\bigg)^{\dfrac{\pi}{2}} }

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}xy = \dfrac{d}{dx} \sqrt{\bigg({a}\bigg)^{\dfrac{\pi}{2}} }

We know,

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: u\dfrac{d}{dx}v \:  +  \: u\dfrac{d}{dx}v \: }}

So, using this, we get

\rm :\longmapsto\:x\dfrac{d}{dx}y + y\dfrac{d}{dx}x = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y \times 1 = 0

\rm :\longmapsto\:x\dfrac{dy}{dx} + y  = 0

\bf\implies \:\dfrac{dy}{dx}  \:  =  -  \: \dfrac{y}{x}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

MORE TO KNOW

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions