Math, asked by tttt89, 11 months ago

solve Question no 46 please ​

Attachments:

Answers

Answered by Queen224149
4

HOPE IT HELPS..........

Attachments:
Answered by Anonymous
10

\boxed{\boxed{\mathtt{Answer=0,\frac{-13}{3}}}}

Solution :

Let the required ratio be m : n

Here, we have x_1=5,\:x_2 =-1\:and \\\: y_1= -6,\:y_2=-4

Now, According to the question we have :

\frac{mx_2+mx_1}{m+n}=0

\frac{m(-1)+m(5)}{m+n}=0

⇒ m(-1) + n(5) = 0

⇒ (-m) + 5n = 0

⇒m = 5n

\frac{m}{n}=\frac{5}{1}

⇒ m : n = 5 : 1

Thus, Coordinates of points of division

(0,\frac{my_2+my_1}{m+n})

(0, \frac{5(-4)+1(-6)}{6})

(0,\frac{-20-6}{6})\:=\sf \:(0,\frac{-26}{6})=(0,\frac{-13}{6})

 \longrightarrow(<strong>0</strong><strong>,</strong>\dfrac{<strong>-</strong><strong>1</strong><strong>3</strong>}{<strong>3</strong>})

Similar questions