Math, asked by pratyush4211, 1 year ago

Solve Questions 41 and 43

Thanks

No Spam
No Copy​

Attachments:

lucifer5085: 43) b
pratyush4211: yes it is But give me in process
lucifer5085: k wait
pratyush4211: 41 ka( c) h

Answers

Answered by lucifer5085
1
I got answer of 43) b
Attachments:

pratyush4211: wrong
lucifer5085: I got it 1...
Answered by Swarup1998
6
\underline{\mathrm{41.}}

\star \:\mathrm{A=\frac{1}{\sqrt{19-\sqrt{360}}}}

\mathrm{=\frac{\sqrt{19+\sqrt{360}}}{\sqrt{(19-\sqrt{360})(19+\sqrt{360}})}}

\mathrm{=\frac{\sqrt{19+\sqrt{360}}}{\sqrt{361-360}}}

\mathrm{=\sqrt{19+\sqrt{360}}}

\mathrm{=\sqrt{19+6\sqrt{10}}}

\mathrm{=\sqrt{9+6\sqrt{10}+10}}

\mathrm{=\sqrt{(3+\sqrt{10})^{2}}}

\mathrm{=3+\sqrt{10}}

\star \:\mathrm{B=\frac{1}{\sqrt{21-\sqrt{440}}}}

\mathrm{=\frac{\sqrt{21+\sqrt{440}}}{\sqrt{(21-\sqrt{440})(21-\sqrt{440}})}}

\mathrm{=\frac{\sqrt{21+\sqrt{440}}}{\sqrt{441-440}}}

\mathrm{=\sqrt{21+\sqrt{440}}}

\mathrm{=\sqrt{21+2\sqrt{110}}}

\mathrm{=\sqrt{11+2\sqrt{110}+10}}

\mathrm{=\sqrt{(\sqrt{11}+\sqrt{10})^{2}}}

\mathrm{=\sqrt{11}+\sqrt{10}}

\star \:\mathrm{C=\frac{2}{\sqrt{20+\sqrt{396}}}}

\mathrm{=2\frac{\sqrt{20-\sqrt{396}}}{\sqrt{(20+\sqrt{396})(20-\sqrt{396}})}}

\mathrm{=2\frac{\sqrt{20-\sqrt{396}}}{\sqrt{440-396}}}

\mathrm{=2\frac{\sqrt{20-\sqrt{396}}}{2}}

\mathrm{=\sqrt{20-\sqrt{396}}}

\mathrm{=\sqrt{20-6\sqrt{11}}}

\mathrm{=\sqrt{11-6\sqrt{11}+9}}

\mathrm{=\sqrt{(\sqrt{11}-3)^{2}}}

\mathrm{=\sqrt{11}-3}

\text{Now, A - B + C}

\mathrm{=(3+\sqrt{10})-(\sqrt{11}+\sqrt{10})+(\sqrt{11}-3)}

\mathrm{=3+\sqrt{10}-\sqrt{11}-\sqrt{10}+\sqrt{11}-3}

\mathrm{=0}

\to \boxed{\mathrm{\frac{1}{\sqrt{19-\sqrt{360}}}-\frac{1}{\sqrt{21-\sqrt{440}}}+\frac{2}{\sqrt{20+\sqrt{396}}}=0}}

\text{Option (C) is correct.}

\underline{\mathrm{43.}}

\mathrm{Now,\:(\sqrt[6]{15-2\sqrt{56}})\times (\sqrt[3]{\sqrt{7}+2\sqrt{2}})}

\mathrm{=\sqrt[6]{(\sqrt{8}-\sqrt{7})^{2}}\times \sqrt[3]{\sqrt{8}+\sqrt{7}}}

\mathrm{=\{(\sqrt{8}-\sqrt{7})^{2}\}^{1/6}\times \{\sqrt{8}+\sqrt{7}\}^{1/3}}

\mathrm{=(\sqrt{8}-\sqrt{7})^{1/3}\times (\sqrt{8}+\sqrt{7})^{1/3}}

\mathrm{=\{(\sqrt{8}-\sqrt{7})(\sqrt{8}+\sqrt{7})\}^{1/3}}

\mathrm{=(8-7)^{1/3}}

\mathrm{=1}

\to \boxed{\mathrm{(\sqrt[6]{15-2\sqrt{56}})\times (\sqrt[3]{\sqrt{7}+2\sqrt{2}})=1}}

\text{Option (B) is correct.}

pratyush4211: thanks
Similar questions