solve rhe questio pllz question is above
Answers
Rolling three dice simultaneously
No of possible outcomes: 6*6*6 = 216
The Sample space is shown below:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) (1,2,6)
(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5) (1,3,6)
(1,4,1) (1,4,2) (1,4,3) (1,4,4) (1,4,5) (1,4,6)
(1,5,1) (1,5,2) (1,5,3) (1,5,4) (1,5,5) (1,5,6)
(1,6,1) (1,6,2) (1,6,3) (1,6,4) (1,6,5) (1,6,6)
(2,1,1) (2,1,2) (2,1,3) (2,1,4) (2,1,5) (2,1,6)
(2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,2,5) (2,2,6)
(2,3,1) (2,3,2) (2,3,3) (2,3,4) (2,3,5) (2,3,6)
(2,4,1) (2,4,2) (2,4,3) (2,4,4) (2,4,5) (2,4,6)
(2,5,1) (2,5,2) (2,5,3) (2,5,4) (2,5,5) (2,5,6)
(2,6,1) (2,6,2) (2,6,3) (2,6,4) (2,6,5) (2,6,6)
(3,1,1) (3,1,2) (3,1,3) (3,1,4) (3,1,5) (3,1,6)
(3,2,1) (3,2,2) (3,2,3) (3,2,4) (3,2,5) (3,2,6)
(3,3,1) (3,3,2) (3,3,3) (3,3,4) (3,3,5) (3,3,6)
(3,4,1) (3,4,2) (3,4,3) (3,4,4) (3,4,5) (3,4,6)
(3,5,1) (3,5,2) (3,5,3) (3,5,4) (3,5,5) (3,5,6)
(3,6,1) (3,6,2) (3,6,3) (3,6,4) (3,6,5) (3,6,6)
(4,1,1) (4,1,2) (4,1,3) (4,1,4) (4,1,5) (4,1,6)
(4,2,1) (4,2,2) (4,2,3) (4,2,4) (4,2,5) (4,2,6)
(4,3,1) (4,3,2) (4,3,3) (4,3,4) (4,3,5) (4,3,6)
(4,4,1) (4,4,2) (4,4,3) (4,4,4) (4,4,5) (4,4,6)
(4,5,1) (4,5,2) (4,5,3) (4,5,4) (4,5,5) (4,5,6)
(4,6,1) (4,6,2) (4,6,3) (4,6,4) (4,6,5) (4,6,6)
(5,1,1) (5,1,2) (5,1,3) (5,1,4) (5,1,5) (5,1,6)
(5,2,1) (5,2,2) (5,2,3) (5,2,4) (5,2,5) (5,2,6)
(5,3,1) (5,3,2) (5,3,3) (5,3,4) (5,3,5) (5,3,6)
(5,4,1) (5,4,2) (5,4,3) (5,4,4) (5,4,5) (5,4,6)
(5,5,1) (5,5,2) (5,5,3) (5,5,4) (5,5,5) (5,5,6)
(5,6,1) (5,6,2) (5,6,3) (5,6,4) (5,6,5) (5,6,6)
(6,1,1) (6,1,2) (6,1,3) (6,1,4) (6,1,5) (6,1,6)
(6,2,1) (6,2,2) (6,2,3) (6,2,4) (6,2,5) (6,2,6)
(6,3,1) (6,3,2) (6,3,3) (6,3,4) (6,3,5) (6,3,6)
(6,4,1) (6,4,2) (6,4,3) (6,4,4) (6,4,5) (6,4,6)
(6,5,1) (6,5,2) (6,5,3) (6,5,4) (6,5,5) (6,5,6)
(6,6,1) (6,6,2) (6,6,3) (6,6,4) (6,6,5) (6,6,6)
Favourable outcome (three similar numbers, i.e. getting an identical number in all the three dice) : 6
Probability = No of favourable outcomes/Total no of outcomes = 6/216
ATQ: PROBABILTY OF NOT SHOWNING THE SAME NUMBER IS 1- 1/36= 35/36
No of possible outcomes: 6*6*6 = 216
The Sample space is shown below:
(1,1,1) (1,1,2) (1,1,3) (1,1,4) (1,1,5) (1,1,6)
(1,2,1) (1,2,2) (1,2,3) (1,2,4) (1,2,5) (1,2,6)
(1,3,1) (1,3,2) (1,3,3) (1,3,4) (1,3,5) (1,3,6)
(1,4,1) (1,4,2) (1,4,3) (1,4,4) (1,4,5) (1,4,6)
(1,5,1) (1,5,2) (1,5,3) (1,5,4) (1,5,5) (1,5,6)
(1,6,1) (1,6,2) (1,6,3) (1,6,4) (1,6,5) (1,6,6)
(2,1,1) (2,1,2) (2,1,3) (2,1,4) (2,1,5) (2,1,6)
(2,2,1) (2,2,2) (2,2,3) (2,2,4) (2,2,5) (2,2,6)
(2,3,1) (2,3,2) (2,3,3) (2,3,4) (2,3,5) (2,3,6)
(2,4,1) (2,4,2) (2,4,3) (2,4,4) (2,4,5) (2,4,6)
(2,5,1) (2,5,2) (2,5,3) (2,5,4) (2,5,5) (2,5,6)
(2,6,1) (2,6,2) (2,6,3) (2,6,4) (2,6,5) (2,6,6)
(3,1,1) (3,1,2) (3,1,3) (3,1,4) (3,1,5) (3,1,6)
(3,2,1) (3,2,2) (3,2,3) (3,2,4) (3,2,5) (3,2,6)
(3,3,1) (3,3,2) (3,3,3) (3,3,4) (3,3,5) (3,3,6)
(3,4,1) (3,4,2) (3,4,3) (3,4,4) (3,4,5) (3,4,6)
(3,5,1) (3,5,2) (3,5,3) (3,5,4) (3,5,5) (3,5,6)
(3,6,1) (3,6,2) (3,6,3) (3,6,4) (3,6,5) (3,6,6)
(4,1,1) (4,1,2) (4,1,3) (4,1,4) (4,1,5) (4,1,6)
(4,2,1) (4,2,2) (4,2,3) (4,2,4) (4,2,5) (4,2,6)
(4,3,1) (4,3,2) (4,3,3) (4,3,4) (4,3,5) (4,3,6)
(4,4,1) (4,4,2) (4,4,3) (4,4,4) (4,4,5) (4,4,6)
(4,5,1) (4,5,2) (4,5,3) (4,5,4) (4,5,5) (4,5,6)
(4,6,1) (4,6,2) (4,6,3) (4,6,4) (4,6,5) (4,6,6)
(5,1,1) (5,1,2) (5,1,3) (5,1,4) (5,1,5) (5,1,6)
(5,2,1) (5,2,2) (5,2,3) (5,2,4) (5,2,5) (5,2,6)
(5,3,1) (5,3,2) (5,3,3) (5,3,4) (5,3,5) (5,3,6)
(5,4,1) (5,4,2) (5,4,3) (5,4,4) (5,4,5) (5,4,6)
(5,5,1) (5,5,2) (5,5,3) (5,5,4) (5,5,5) (5,5,6)
(5,6,1) (5,6,2) (5,6,3) (5,6,4) (5,6,5) (5,6,6)
(6,1,1) (6,1,2) (6,1,3) (6,1,4) (6,1,5) (6,1,6)
(6,2,1) (6,2,2) (6,2,3) (6,2,4) (6,2,5) (6,2,6)
(6,3,1) (6,3,2) (6,3,3) (6,3,4) (6,3,5) (6,3,6)
(6,4,1) (6,4,2) (6,4,3) (6,4,4) (6,4,5) (6,4,6)
(6,5,1) (6,5,2) (6,5,3) (6,5,4) (6,5,5) (6,5,6)
(6,6,1) (6,6,2) (6,6,3) (6,6,4) (6,6,5) (6,6,6)
p(A)=6/216
=0.0278