Math, asked by Anonymous, 9 months ago

Solve Root ( 1+ cos theta/ 1- cos theta )+ Root ( 1- cos theta/ 1 +cos theta ) = 2cosec theta ​

Answers

Answered by akanshagarwal2005
7

Answer:

I proved in above photo. Mark it brainlist and also our message going wide.

Now some more people start reporting

Attachments:
Answered by Anonymous
15

{\underline{\underline{\frak{To\;Prove\;:}}}}\\ \\

\sf  \sqrt\frac{1 +  \cos(theta) }{1 -  \cos(\theta) }  + \sqrt \frac{1 -  \cos(\theta) }{1 +  \cos(\theta) }  = 2 \csc(\theta)

⠀⠀

{\underline{\underline{\frak{Proof\;:}}}}\\ \\

Taking L.H.S.,

⠀⠀

:\implies\sf  \frac{\sqrt\frac{1 +  \cos(theta) }{1 -  \cos(\theta) }  + \sqrt \frac{1 -  \cos(\theta) }{1 +  \cos(\theta) } }{(1 -  \cos(\theta))(1 +  \cos(\theta) ) }  = 2 \csc(\theta)   \\ \\

:\implies\sf   \frac{2}{ \sqrt {\sin^{2} \theta }}  = 2 \csc(\theta)\\ \\

:\implies\sf  \frac{2}{ \sin \theta}  = 2 \csc(\theta)  \\ \\

:\implies\sf   2 \csc(\theta)  = 2 \csc(\theta) \\ \\

:\implies\sf LHS = RHS\\ \\

\qquad\qquad\qquad{\underline{\underline{\sf{\pink{Hence,\;Proved!}}}}}

⠀⠀⠀━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\qquad\qquad\qquad\boxed{\underline{\underline{\purple{\bigstar \: \bf\: Identity\:used\:\bigstar}}}} \\  \\

  • \sf 1 -  \csc^{2}\theta  =  \sin^{2} \theta

⠀⠀

\boxed{</p><p>\begin{minipage}{7.5 cm}</p><p> \bf  $\bigstar$ Fundamental Trigonometric Identities \\ \\</p><p> \bullet \:  \:  $ \sf \sin^2\theta + \cos^2\theta=1 \\ \\</p><p> \bullet \:  \: \sf 1+\tan^2\theta = \sec^2\theta \\ \\</p><p> \bullet \:  \: \sf 1+\cot^2\theta = \text{cosec}^2 \, \theta$</p><p>\end{minipage}</p><p>}

Similar questions