solve (sec x tan x tan y -e^x)dx+ sec x sec^2y dy =0
Answers
Answered by
2
Answer:
secx⋅tanx⋅tany−ex)⋅dx+(secx⋅sec2y)⋅dy=0
⟹secx⋅tanx⋅tany⋅dx+secx⋅sec2y⋅dy=ex⋅dx
⟹d(secx⋅tany)=d(ex)
⟹secx⋅tany=ex+C
Step-by-step explanation:
Mark me as brainliest
Answered by
6
Answer:
Solving (sec x tan x tan y -eˣ)dx+ sec x sec²y dy =0
gives sec x tan x = eˣ + c
Step-by-step explanation:
Given (sec x tan x tan y -eˣ)dx+ sec x sec²y dy =0
This can be written as
(sec x tan x tan y)dx - (eˣ)dx + (sec x sec²y)dy =0
=> (sec x tan x tan y)dx + (sec x sec²y)dy = (eˣ)dx
Now we know that d(sec x * tan y) = sec x sec²y + tan y *sec x * tan x
On substitution,
d(sec x tan x) = (eˣ)dx
On integrating both sides, we get,
d(sec x tan x) = (eˣ)dx
=> sec x tan x = eˣ + c
which is the required solution.
Similar questions