Biology, asked by ashokbhosale8111, 10 months ago

Solve simultaneous equation 4x+3y-4=0;6x=8-5y


Answers

Answered by sarojinipanda02
8

Explanation:

Given, 4x + 3y - 4 = 0 -------(1)

6x = 8 - 5y

6x + 5y - 8 = 0 -------(2)

use Cramer's rule ,

4x + 3y - 4 = 0

6x + 5y - 8 = 0

for equations ,

\frac{x}{3\times-8-(-4)\times5}=\frac{-y}{4\times - 8-(-4)\times6}=\frac{1}{4\times5-3\times6}

=> x/(-24 + 20) = -y/(-32+ 24) = 1/(20 - 18)

=> x/-4 = -y/-8= 1/2

=> x/-4 = y/8 = 1/2

=> x = -4/2 = -2 and y = 8/2 = 4

hence, x = -2 and y = 4

Answered by TRISHNADEVI
5

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:  \: SOLUTION \:  \: } \mid}}}}}

 \:  \:  \:  \:  \:  \:  \:  \:   \bold{4x + 3y-4=0} \\  \\ </p><p> \bold {=&gt; \underline{ \red{ \:  \:  4x+3y = 4 \:  \:  }}\:  \:  \:  \:  -----&gt;(1)} \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \bf{</p><p>6x=8-5y } \\  \\  \bold{</p><p>=&gt;  \underline{ \red{ \:  \: 6x+5y = 8   \:  \: }}\:  \:  \:  \: -----&gt;(2)}

 \bold{(1) \times \red{5} =&gt; 20x+15y=20 \:  \:  \:  -----&gt;(3)} \\  \\ </p><p> \bold{(2) \times \red{3}=&gt; 18x+15y=24 \:  \:  \:  -----&gt;(4)}

Now,

 \bold{(3)-(4)=&gt; 2x = - 4} \\  \\  \bold{</p><p>=&gt; x = \:  \frac{ - 4}{2} } \\  \\  \bold{ \therefore \:   \underline{ \red{ \:  \: x = -2 \:  \: }}}</p><p>

Putting the value of x in eq. (1)

 \bold{4 \times (-2)+3y=4} \\  \\  \bold{</p><p>=&gt; -8 +3y=4} \\  \\  \bold{</p><p>=&gt;3y=4+8} \\  \\  \bold{</p><p>=&gt;3y=12} \\  \\  \bold{</p><p>=&gt; y =  \frac{12}{3} } \\  \\  \bold{</p><p> \therefore \: \underline{ \red{ \:  \: y=4 \:  \: }}}</p><p>

 \huge{ \underline{ \overline{ \mid{ \mathfrak{ \purple{ \:  \: VERIFICATION \:  \: } \mid}}}}}

We get,

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \boxed{  \bold{\red{ \:  \:  \: x = -2  \: ,  \: y= 4 \:  \: }}}</p><p>

Putting the value of x and y in eq. (1)

 \mathsf{L.H.S. = 4 \times( \red{-2})+3 \times( \red{4})} \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathsf{</p><p>= -8 + 12} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \mathsf{</p><p>= 4 \: =R.H.S.}</p><p>

Again,

Putting the value of x and y in eq. (2)

 \mathsf{L.H.S. = 6 \times ( \red{-2})+5 \times (  \red{4})} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathsf{</p><p>= -12+20} \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \mathsf{</p><p>=8=R.H.S.}</p><p>

As in both the equation, L.H.S.=R.H.S.

So,

 \bold{ Value   \:  \:  \: of   \:  \:   \underline{\pink{ \:  \: x = -2 \:  \: }} \:   \: \: and \:  \:  \: Value \:  \:  \:   of   \:  \:  \underline{ \pink{ \:  \: y = 4 \:  \: }}}

Similar questions