Math, asked by PranzalRimal, 23 days ago

solve sinθ = √3(1-cosθ) where 0<=θ<=360

Answers

Answered by TrustedAnswerer19
4

{ \boxed{\boxed{\begin{array}{cc}  \bf  sin \theta =  \sqrt{3} (1 - cos\theta) \\  \\ \bf \implies \: sin\theta =  \sqrt{3}  -  \sqrt{3} cos\theta \\ \\ \bf \implies \:  \sqrt{3} cos\theta + sin\theta =  \sqrt{3 }  \\  \\ \pink{\bf \: now \: divided \: both \: side \: by \: 2}  \\  \\\bf \implies \:  \frac{ \sqrt{3} }{2}  cos\theta +  \frac{1}{2}sin\theta =   \frac{ \sqrt{3} }{2}   \\  \\ \bf \implies \: cos {30}^{ \circ}  \: cos\theta + sin {30}^{ \circ} \: sin \theta  = cos {30}^{ \circ}  \\  \\  \small{\pink{ {\boxed{\begin{array}{cc} \bf we \: know \: that \: \\  \\  \bf \: cos(x - y) = cos x  \: cosy  +  sinx \: siny\end{array}}}} }\:  \\  \\ \bf \implies \: cos(\theta -  {30}^{ \circ} ) = cos {30}^{ \circ}  \\  \\ \pink{ {\boxed{\begin{array}{cc} \bf \: we \: know \: that \\   \\  \bf \: if \:  \: cos\theta = cos \alpha  \\  \\  \bf \: then \:  \: \theta =2 n\pi \pm \:  \alpha  \:  \:  \: where \: n \in \: Z \end{array}}}} \\  \\ \bf \implies \: \theta -  {30}^{ \circ}  = 2 n\pi \pm{30}^{ \circ}  \\  \\ \bf \implies \: \theta =2 n\pi \pm {30}^{ \circ}   +  {30}^{ \circ} \end{array}}}}

Now,

Taking (+ve)

 \bf \: \theta = 2\pi + 30 + 30 \\  =  \bf2n\pi + 60

Taking (-ve)

 \bf\theta = 2n\pi - 30 + 30 \\  = \bf 2n\pi \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Again given,

 \bf0  \leqslant \theta \leqslant 360

{ {\boxed{\begin{array}{c |c| c}   \underline{\bf \: value  \bf \: of \: n}&amp;  \underline{\bf\theta = 2n\pi + 60}&amp; \underline{\theta = 2n\pi }\\   \\  \bf \: n = 0&amp;\theta = 60&amp;\theta = 0 \\  \\  \bf \: n = 1&amp;\theta = 420&amp;\theta = 360 \\  \\  \bf \: n =  - 1&amp;\theta =  - 300&amp;\theta =  - 360 \\  \\  \bf ...&amp;...&amp;...\end{array}}}}

According to the range,

 \theta \:  =  {0}^{ \circ} , {60}^{ \circ},  {360}^{ \circ}

Similar questions