Math, asked by Anonymous, 3 months ago

solve system of linear equation using Cramer's rule x+3y=4 2x-y=2​

Answers

Answered by mathdude500
4

\large\underline{\sf{Solution-}}

Given pair of linear equations are

x + 3y = 4

2x - y = 2

The matrix representation of the equations are

\rm :\longmapsto\:A = \: \begin{bmatrix} 1 &  3\\ 2 &  - 1\end{bmatrix}

\rm :\longmapsto\:B = \begin{gathered}\sf \left[\begin{array}{c}4\\2\end{array}\right]\end{gathered}

\rm :\longmapsto\:X = \begin{gathered}\sf \left[\begin{array}{c}x\\y\end{array}\right]\end{gathered}

So that,

\rm :\longmapsto\:AX = B

Consider,

\rm :\longmapsto\: |A|  \:  =  \: \begin{array}{|cc|}\sf 1 &\sf  3  \\ \sf 2 &\sf  - 1 \\\end{array}

\rm :\longmapsto\: |A| =  - 1 - 6

\rm :\longmapsto\: |A| =  - 7

\rm :\implies\: |A|  \ne \:  0

\bf\implies \:Equations \: has \: unique \: solution.

Consider,

\rm :\longmapsto\: |D_1|  \:  =  \: \begin{array}{|cc|}\sf 4 &\sf  3  \\ \sf 2 &\sf  - 1 \\\end{array}

\rm :\longmapsto\: |D_1| =  - 4 - 6

\rm :\longmapsto\: |D_1| =  - 10

Consider,

\rm :\longmapsto\: |D_2|  \:  =  \: \begin{array}{|cc|}\sf 1 &\sf  4  \\ \sf 2 &\sf  2 \\\end{array}

\rm :\longmapsto\: |D_2|  = 2 - 8

\rm :\longmapsto\: |D_2|  = - 6

Therefore,

\rm :\longmapsto\:x = \dfrac{ |D_1| }{ |A| } = \dfrac{ - 10}{ - 7} = \dfrac{10}{7}

\rm :\longmapsto\:y = \dfrac{ |D_2| }{ |A| } = \dfrac{ - 6}{ - 7} = \dfrac{6}{7}

Similar questions