Math, asked by Trinika4267, 1 year ago

solve tan-1 sqrt(x^2 + x) +sin-1 sqrt(x^2 + x + 1) = pi/2

Answers

Answered by AnamSiddiqui28
94
tan-1 [x2+x]1/2 + sin-1 [x2+x+1]1/2 = pi/2

= tan-1[x2+x]1/2 + sin-1 [x2+x+1]1/2 = sin-1 [x2+x+1]1/2 + cos-1 [x2+x+1]1/2

= tan-1 [x2+x]1/2 = cos-1 [x2+x+1]1/2

= cos-1[1/ (x2+x+1)1/2] = cos-1[x2+x+1]1/2

= 1/ (x2+x+1)1/2 = [ x2+x+1]1/2

= x2+x+1 = 1

= x2+x = 0

=x(x+1)  =>  x=0 or x = -1


hope this is Helpful for you ..

please mark as brilliancy....
Answered by ravilaccs
0

Answer:

x=0$ and $-1$ are the solution of the given equation.

Step-by-step explanation:

$$\begin{aligned}&\tan ^{-1} \sqrt{x(x+1)}+\sin ^{-1} \sqrt{x^{2}+x+1}=\frac{\pi}{2} \\&\tan y=\sqrt{x(x+1)} \\&\cos y=\frac{1}{\sqrt{x^{2}+x+1}} \\&\left.y=\cos ^{-1}\right) \frac{1}{\sqrt{x^{2}+x+1}} \\&\cos ^{-1}\left(\frac{1}{\sqrt{x^{2}+x+1}}\right)+\sin ^{-1}\left(\sqrt{x^{2}+x+1}\right)=\frac{\pi}{2}\end{aligned}$$

We know that

$$\sin ^{-1} y+\cos ^{-1} y=\frac{\pi}{2}$$

So $\frac{1}{\sqrt{x^{2}+x+1}}=\sqrt{x^{2}+x+1}$

$$\begin{aligned}&x^{2}+x+1=1 \\&x^{2}+x=0 \\&x=0,-1\end{aligned}$$

Given equation exists, if

x^{2}+x \geq 0$ and $0 < \sqrt{x^{2}+x+1} \leq 1$

$\left[\because x^{2}+x+1\right.$is always greater than zero

Now, \quad x^{2}+x \geq 0$ and $x^{2}+x+1 \leq 1$

$\begin{array}{lllr}\text { or } & x^{2}+x \geq 0 & \text { and } & x^{2}+x \leq 0 \\ \text { or } & x^{2}+x=0 & \text { i.e., } & x(x+1)=0\end{array}$

Hence, x=0$ and $-1$ are the solution of the given equation.

Attachments:
Similar questions