Math, asked by EmmaCarlos, 1 year ago

solve, tan^2. x. --2sinx = 0​

Answers

Answered by arnab2261
15

 \huge \mathbb {Answer:-}

_________

We have,

 \implies tan^2\: x - 2 \: sin \: x = 0

 \implies ( sin^2 \: x / cos^2 \: x) - 2 \: sin \: x = 0

 \implies ( sin^2 \: x - 2 \: sin \: x \: cos^2 \: x) / cos^2 \: x = 0

 \implies sin \: x ( sin \: x - 2\:cos^2 x) = 0

 \implies sin \: x = 2\: cos^2 \: x

 \implies sin \: x = 2 - 2 \: sin^2 \: x

 \implies 2 \: sin^2 \:x + sin \: x - 2 = 0

Therefore, we get :

 sin \: x = [- ( 1) + </p><p>\sqrt{ 1^2 - 4. 2. (-2)}] / 4

 = ( - 1 + \sqrt{17} ) / 4

Thus :

 x = sin^{-1} ( - 1 + \sqrt {17} ) / 4

Thank you !

Have a nice day..

Similar questions