Math, asked by SharmaShivam, 1 year ago

Solve:
2^{x+2}27^{\frac{x}{x-1}}=9

Answers

Answered by Swarup1998
21

Solution :

2^{x+2}\times 27^{\frac{x}{x-1}}=9

\implies 2^{x+2}\times 3^{\frac{3x}{x-1}}=3^{2}

\implies 2^{x+2}\times 3^{\frac{3x}{x-1}}=2^{0}\times 3^{2}

Comparing among like powers of 2 and 3 from both sides, we get

x + 2 = 0 ⇒ x = - 2

& \frac{3x}{x-1}=2

⇒ 3x = 2 (x - 1)

⇒ 3x = 2x - 2

⇒ 3x - 2x = - 2

x = - 2

∴ the required solution is x = - 2

Verification :

Putting x = - 2 in the given equation's Left Hand Side, we get

2^{-2+2}\times 27^{\frac{-2}{-2-1}}

=2^{0}\times 27^{\frac{2}{3}}

=1\times \left(3^{\frac{2}{3}}\right)^{3}

=3^{2}

= 9

Hence, verified.


Swarup1998: :-)
Anonymous: Perfect!
Anonymous: Great Answer sir
geniuss22: Baha'i unblock carona
Answered by geniuss22
5

Answer

Follow the steps and the verfing steps

2 x+2 ×27 x−1x =9

\implies 2^{x+2}\times 3^{\frac{3x}{x-1}}=3^{2}⟹2

x+2 ×3 x−13x =3 2

\implies 2^{x+2}\times 3^{\frac{3x}{x-1}}=2^{0}\times 3^{2}⟹2

x+2 ×3 x−13x =2 0 ×3 2

comparing the both powers

x + 2 = 0

x = - 2

 \frac{3x}{x-1}=2

x−13x =2

next steps

⇒ 3x = 2 (x - 1)

⇒ 3x = 2x - 2

⇒ 3x - 2x = - 2

⇒ x = - 2

hence x = - 2

Verifing steps

make x = - 2 in LHS

2^{-2+2}\times 27^{\frac{-2}{-2-1}}2

−2+2 ×27 −2−1

−2

=2^{0}\times 27^{\frac{2}{3}}=2

0 ×27 32

=1\times \left(3^{\frac{2}{3}}\right)^{3}=1

(3×3 ) 3

=3^{2}=3

2= 9

Hence answer =9

Similar questions