Math, asked by Anonymous, 9 months ago

solve:
 {4x}^{2}  + ( {a}^{2}  -  {b}^{2} ) = 0
by b²-4ac method.....♪​

Answers

Answered by tanejakca
0
D=b^2-4ac=0-4(4)(a^2-b^2)
See the photo attached
Answered by Anonymous
1

solution:-

The given equation is :- 4x²+(a²-b²)=0

we can write the equation:- 4x²+0x+(a²-b²)=0

comparing it with ax²+bx+c=0, we get

a=4,b=0 and c=(a²-b²)

find discriminant:- D=b²-4ac

D=b²-4ac

now put the value ,we get

D=(0)²-4×4×(a²-b²)

D= -16(a²-b²)

D= -16a²+16b²

D= 16b²-16a²

D=16(b²-a²)

Now use quadratic formula

x =  \frac{ - b \pm \sqrt{d} }{2a}

put the value

x =  \frac{ - 0 \pm \sqrt{16( {b}^{2}  - {a}^{2})  } }{2 \times 4}

x =  \frac{ \pm \sqrt{16(b - a) {}^{2} } }{8}

x =  \frac{ + 4(b - a)}{8}  \: and \: x \frac{ - 4(b - a)}{8}

x =  \frac{(b - a)}{2}  \: and \: x \frac{ - (b - a)}{2}

Answer:-

 \boxed { \large{x =  \frac{(b - a)}{2}  \: and \: x \frac{ - (b - a)}{2} }}

Similar questions