Math, asked by divgaichor, 10 months ago

solve:
6m {}^{2}  +  \frac{2}{m {}^{2} }  = 7

Answers

Answered by Anonymous
1

Answer:

hope it helps

mark as brainlist

Attachments:
Answered by sanketj
3

6 {m}^{2}  +  \frac{2}{ {m}^{2} }  = 7 \\ 6 {m}^{2}  +  \frac{2}{ {m}^{2} }  - 7 = 0 \\  \\ multiplying \: throughout \: by \:  {m}^{2}  \\  {6m}^{4}  + 2 -  7 {m}^{2}  = 0 \\ 6 {(m {}^{2})}^{2}  - 7 {m}^{2}  + 2 = 0 \\  \\ let \:  {m}^{2}  = x \\  \\ then \\ 6 {x}^{2}  - 7x + 2 = 0 \\ 6 {x}^{2}  - 3x - 4x + 2 = 0 \\ 3x(2x  - 1) - 2(2x - 1) = 0 \\ (3x - 2)(2x - 1) = 0 \\ 3x  - 2 = 0 \:  \: or \:  \: 2x - 1 = 0 \\ x =  \frac{2}{3}  \:  \: or \:  \: x =  \frac{1}{2}  \\  {m}^{2}  =  \frac{2}{3 }  \:  \: or \:   \: {m}^{2}  =   \frac{1}{2}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ... \: ( {m}^{2}  = x) \\ m =  \sqrt{ \frac{2}{3} }  \:  \: or \: m =  \frac{1}{ \sqrt{2} }

Similar questions