Math, asked by Anonymous, 5 months ago

Solve:–

 \frac{2}{5x}  -  \frac{5}{3x}  =  \frac{1}{15}
❌No spam answers ❌
✔️Best answer needed✔️

Wrong answers = report​

Answers

Answered by Anonymous
5

Answer:

 \frac{2}{5x} - \frac{5}{3x} = \frac{1}{15}  \\  \frac{2 \times 3}{5x \times3} =  \frac{6}{15x}  \\  \frac{5 \times 5}{3x \times 5} =  \frac{25}{15x}  \\  \frac{6 - 25}{15x} =  \frac{1}{5} \\  \frac{ - 19}{15x} =  \frac{1}{15} \\   \frac{ - 19}{x} =  \frac{15}{15} \\ x =  - 19 \\ hope \: it \: helps \: you \: dear

Answered by nishantvipdp
32

Answer:

Analysis

Here we're an equation that \displaystyle\rm\dfrac{2}{5x}-\dfrac{5}{3x}=\dfrac{1}{15} .And we can see that their denominators is not equal. So we've to make their denominators equal by taking their LCM. And then we can simply find the answer.

Given

  • \displaystyle\rm\dfrac{2}{5x}-\dfrac{5}{3x}=\dfrac{1}{15}

To Find

Solution for the given equation.

Answer

\displaystyle\rm\rightarrow\dfrac{2}{5x}-\dfrac{5}{3x}=\dfrac{1}{15}

\displaystyle\rm\rightarrow\dfrac{3\times2}{15x}-\dfrac{5\times5}{15x}=\dfrac{1}{15}[LCM(3x,5x)=15x]

\displaystyle\rm\rightarrow\dfrac{6}{15x}-\dfrac{25}{15x}=\dfrac{1}{15}

\displaystyle\rm\rightarrow\dfrac{(6-25)}{15x}=\dfrac{1}{15}

\displaystyle\rm\rightarrow\dfrac{-19}{15x}=\dfrac{1}{15}

Cross Multiplication Method

\displaystyle\rm\rightarrow\dfrac{-19}{15x}=\dfrac{1}{15}

\displaystyle\rm\rightarrow{-19\times15}=1\times15x

\displaystyle\rightarrow\rm\dfrac{-19\times15}{15}=x

\displaystyle\rm\rightarrow\dfrac{-19\times{\cancel{15}}}{\cancel{15}}=x

\displaystyle\rm\rightarrow{-19=x}

\displaystyle\rm\rightarrow{x=-19}

{\boxed{\boxed{\rightarrow{\rm{x=-19\checkmark}}}}}

Hence the value of x is -19, which is the required answer.

HOPE IT HELPS.

Similar questions