Math, asked by djk69977, 11 months ago

solve
 \frac{x + y}{xy }  =  \frac{5 }{2} and \frac{x - y}{xy}  =  \frac{1}{2}

Answers

Answered by skaz46
6
Hope it helped u
Pls mark brilliant
Attachments:
Answered by Anonymous
25

Answer :-

x = 1 , y = 2/3

Explanation :-

Pair of linear equations

 \\ \\    \dfrac{x + y}{xy}  =  \dfrac{5}{2}   \rightarrow eq(1) \\  \\    \\  \dfrac{x - y}{xy}  =  \dfrac{1}{2} \rightarrow eq(2) \\   \\

Simplifying eq(1)

 \\  \implies  \dfrac{x + y}{xy} =  \dfrac{5}{2}   \\  \\  \\  \implies  \dfrac{x}{xy}  +  \dfrac{y}{xy}  =  \dfrac{5}{2}  \\  \\  \\  \implies  \dfrac{1}{y}  +  \dfrac{1}{x}  =  \dfrac{5}{2}  \\  \\  \\  \implies  \dfrac{2}{y}   +  \dfrac{2}{x}  = 5 \\

Simplifying eq(2)

 \\  \implies  \dfrac{x  -  y}{xy} =  \dfrac{1}{2}   \\  \\  \\  \implies  \dfrac{x}{xy}   -   \dfrac{y}{xy}  =  \dfrac{1}{2}  \\  \\  \\  \implies  \dfrac{1}{y}   -   \dfrac{1}{x}  =  \dfrac{1}{2}  \\  \\  \\  \implies  \dfrac{2}{y}    -   \dfrac{2}{x}  = 1 \\  \\

After simplying pair of equations are

 \\  \\  \dfrac{2}{y}  +  \dfrac{2}{x}  = 5 \\  \\  \\  \dfrac{2}{y}  -  \dfrac{2}{x}  = 1 \\  \\

Substitute 1/y = a , 1/x = b

2a + 2b = 5 → eq(3)

2a - 2b = 1 → eq(4)

Subtracting eq(4) from eq(3)

⇒ 2a + 2b - ( 2a - 2b ) = 5 - 1

⇒ 2a + 2b - 2a + 2b = 4

⇒ 4b = 4

⇒ b = 4/4

⇒ b = 1

Substitute b = 1 in eq(2)

⇒ 2a + 2b = 5

⇒ 2a + 2( 1 ) = 5

⇒ 2a + 2 = 5

⇒ 2a = 5 - 2

⇒ 2a = 3

⇒ a = 3/2

But a = 1/y

⇒ 3/2 = 1/y

⇒ 2/3 = y

⇒ y = 2/3

But b = 1/x

⇒ 1 = 1/x

⇒ x = 1

Note :-

→ I used Elimination method to solve the given question.

Similar questions