Math, asked by ADARSHBrainly, 3 months ago

SOLVE :-
{ \implies{ \red{ \dfrac{ \cos(45 \degree) }{ \sec(30 \degree) +\csc(30 \degree)   } }}}

PROVE THAT :-
{ \implies{ \red{ \dfrac{ \tan( \theta) }{1 -  \cot( \theta) } +  \dfrac{ \cot( \theta) }{1 -  \tan( \theta) }  = 1 +  \sec( \theta) \times  \csc( \theta)   }}}

Answers

Answered by SeCrEtID2006
18

\huge\tt\underline\blue{thanks}

\huge \underline \frak \pink {★彡 refer attachment彡★}

\huge\tt\underline\blue{hope -its -helpful}

\huge \underline \frak \pink {★彡 Gavya彡★}

Attachments:
Answered by AestheticSoul
29

Question 1 :

 \sf{ \dashrightarrow{ \red{ \dfrac{ \cos(45^{ \circ}) }{ \sec(30^{ \circ} ) + \csc(30 ^{ \circ}) } }}}

Solution :

 \sf{ \longrightarrow \quad{ { \dfrac{ \cos(45^{ \circ}) }{ \sec(30^{ \circ} ) + \csc(30 ^{ \circ}) } }}}

 \sf \longrightarrow \quad  \dfrac{ \dfrac{1}{ \sqrt{2} } }{ \dfrac{2}{ \sqrt{3}} + 2}

 \sf \longrightarrow \quad  \dfrac{ \dfrac{1}{ \sqrt{2} } }{ \dfrac{2 + 2 \sqrt{3} }{\sqrt{3} } }

 \sf \longrightarrow \quad  \dfrac{1}{ \sqrt{2}} \times  \dfrac{ \sqrt{3} }{2 + 2 \sqrt{3} }

 \sf \longrightarrow \quad  \dfrac{ \sqrt{3} }{2 \sqrt{2} + 2 \sqrt{6}  }

Now rationalize the denominator.

 \sf \longrightarrow \quad  \dfrac{ \sqrt{3} \big(2 \sqrt{2}  -  2 \sqrt{6} \big)}{ \big(2 \sqrt{2} + 2 \sqrt{6} \big) \big(2 \sqrt{2}  -  2 \sqrt{6} \big)}

Using Identity :-

 \sf \dashrightarrow \blue{(a - b)(a + b) =  {a}^{2} -  {b}^{2}}

 \sf \longrightarrow \quad  \dfrac{ \sqrt{3} \big(2 \sqrt{2}  -  2 \sqrt{6} \big)}{ \big(2 \sqrt{2}\big)^2  -  \big(2 \sqrt{6} \big)^{2}}

 \sf \longrightarrow \quad  \dfrac{ \sqrt{3} \big(2 \sqrt{2}  -  2 \sqrt{6} \big)}{ \big(2 \sqrt{2}\big)\big(2 \sqrt{2}\big)  -  \big(2 \sqrt{6} \big)\big(2 \sqrt{6} \big)}

 \sf \longrightarrow \quad  \dfrac{2 \sqrt{6} - 2 \sqrt{18}  }{8 - 24}

 \sf \longrightarrow \quad  \dfrac{2 \sqrt{6} - 2 \sqrt{18}  }{ - 16}

 \sf \longrightarrow \quad  \dfrac{2  \big(\sqrt{6} -  \sqrt{2 \times 3 \times 3} \big)  }{ - 16}

 \sf \longrightarrow \quad  \dfrac{2  \big(\sqrt{6} -  3\sqrt{2} \big)  }{ - 16}

 \sf \longrightarrow \quad  \dfrac{ \not2  \big(\sqrt{6} -  3\sqrt{2} \big)  }{ -  \not16}

 \sf \longrightarrow \quad  \dfrac{ \sqrt{6} -  3\sqrt{2} }{ - 8}

 \sf \longrightarrow \quad  \dfrac{ -  \sqrt{6}  +  3\sqrt{2} }{8}

\boxed{ \sf \pmb{ \gray {Answer  \dashrightarrow  \dfrac{ - 6 + 3 \sqrt{2} }{8} }}}  \quad\red \bigstar

Question 2 :

To prove :-

\sf {\dashrightarrow{\red{ \dfrac{ \tan \theta}{1 - \cot \theta } + \dfrac{ \cot \theta }{1 - \tan\theta} = 1 + \sec \theta \times \csc\theta}}}

Solution :

 \sf \longrightarrow \quad  \dfrac{ \tan\theta }{1 -  \cot \theta }  +  \dfrac{ \cot \theta }{1 -  \tan \theta}  = 1 +  \sec \theta \times  \csc \theta

Taking LHS :

 \sf \longrightarrow \quad  \dfrac{ \tan\theta }{1 -  \cot \theta }  +  \dfrac{ \cot \theta }{1 -  \tan \theta}

 \sf \longrightarrow \quad  \dfrac{  \dfrac{ \sin \theta }{ \cos \theta }  }{1 -  \cot \theta }  +  \dfrac{ \dfrac{ \cos \theta}{ \sin\theta }  }{1 -  \tan \theta}

 \sf \longrightarrow \quad  \dfrac{  \dfrac{ \sin \theta }{ \cos \theta }  }{1 -  \dfrac{ \cos \theta}{ \sin \theta} }  +  \dfrac{ \dfrac{ \cos \theta}{ \sin\theta }  }{1 -   \dfrac{ \sin \theta}{ \cos \theta} }

 \sf \longrightarrow \quad  \dfrac{  \dfrac{ \sin \theta }{ \cos \theta }  }{\dfrac{  \sin \theta - \cos \theta}{  \sin \theta} }  +  \dfrac{ \dfrac{ \cos \theta}{ \sin\theta }  }{ \dfrac{ \cos \theta -  \sin \theta}{ \cos \theta} }

 \sf \longrightarrow \quad   \dfrac{ \sin \theta}{ \cos\theta} \times  \dfrac{ \sin\theta}{ \sin\theta -  \cos\theta}  +  \dfrac{ \cos\theta}{ \sin\theta} \times  \dfrac{ \cos\theta}{ \cos\theta -  \sin \theta}

 \sf \longrightarrow \quad    \dfrac{ \sin^2\theta}{ \cos \theta( \sin\theta -  \cos\theta)}  -  \dfrac{ \cos^2\theta}{  \sin \theta(\sin\theta -  \cos \theta)}

Taking (sin θ - cos θ) common.

 \sf \longrightarrow \quad    \dfrac{1}{( \sin \theta -  \cos \theta)} \Bigg[ \dfrac{ \sin^{2}  \theta }{ \cos \theta} -  \dfrac{ { \cos ^{2}\theta } }{ \sin \theta} \Bigg]

 \sf \longrightarrow \quad    \dfrac{1}{( \sin \theta -  \cos \theta)} \Bigg[ \dfrac{ \sin^{3}  \theta -  \cos^{3} \theta  }{ \sin \theta \cos \theta} \Bigg]

Using Identity :-

\sf\dashrightarrow \quad \blue{{a}^{3} -   {b}^{3}   =(a - b)( {a}^{2}  +  {b}^{2}  + ab)}

 \sf \longrightarrow \quad    \dfrac{1}{( \sin \theta -  \cos \theta)} \Bigg[ \dfrac{ (\sin  \theta -  \cos \theta)( { \sin}^{2} \theta +   { \cos}^{2} \theta +  \sin \theta. \cos \theta  }{ \sin \theta \cos \theta} \Bigg]

 \sf \longrightarrow \quad    \dfrac{1}{ \cancel{( \sin \theta -  \cos \theta)}} \Bigg[ \dfrac{ \cancel{ (\sin  \theta -  \cos \theta)}( { \sin}^{2} \theta +   { \cos}^{2} \theta +  \sin \theta. \cos \theta  }{ \sin \theta \cos \theta} \Bigg]

 \sf \longrightarrow \quad     \dfrac{ { \sin}^{2} \theta +   { \cos}^{2} \theta +  \sin \theta. \cos \theta  }{ \sin \theta \cos \theta}

 \sf \longrightarrow \quad     \dfrac{1 +  \sin \theta. \cos \theta  }{ \sin \theta \cos \theta}

 \sf \longrightarrow \quad      \dfrac{1}{ \sin \theta \cos \theta} +  \cancel\dfrac{  \sin \theta \cos \theta  }{ \sin \theta \cos \theta}

 \sf \longrightarrow \quad   \sec \theta  \csc \theta + 1

 \sf LHS \longrightarrow \quad      1 + \sec \theta  \csc \theta

LHS = RHS

Hence, proved.

Similar questions