Math, asked by Anonymous, 4 months ago

solve
 \tan \frac{1}{2} ( { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} }  +  { \cos}^{ - 1}  \frac{1 -  {y}^{2} }{1 +  {y}^{2} } ) \\

Answers

Answered by kaushik05
31

To solve :

 \star \:  \tan \:  \frac{1}{2} ( { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} }  +  { \cos}^{ - 1}  \frac{1 -  {y}^{2} }{1 +  {y}^{2} } ) \\

Solution :

As we know that :

 \star \: \boxed{ \bold{ 2  \: { \tan}^{ - 1} x =  { \sin}^{ - 1}  \frac{2x}{1 +  {x}^{2} } }} \\  \\  \star \boxed{ \bold{ 2 \:  { \tan}^{ - 1} y =  { \cos}^{ - 1}  \frac{1 -  {y}^{2} }{1 +  {y}^{2} } }} \\

 \implies \:  \tan \:  \frac{1}{2} (2 \:  { \tan}^{ - 1} x + 2 { \tan}^{ - 1} y) \\  \\  \implies \:  \tan \:  \frac{1}{ \cancel {2}}  \times  \cancel{2}( { \tan}^{ - 1} x +  { \tan}^{ - 1} y) \\  \\  \implies \:  \tan \: ( { \tan}^{ - 1} x +  { \tan}^{ - 1} y) \\  \\  \implies \: \tan( { \tan}^{ - 1} (  \frac{x + y}{1 - xy} )) \\  \\  \implies \:  \frac{x +y }{1 - xy}

Formula :

 \star  \boxed{\bold{  { \tan}^{ - 1} x +  { \tan}^{ - 1} y =  { \tan}^{ - 1} ( \frac{x + y}{1 - xy} )}} \\  \\  \star \boxed{ \bold{ \tan ({ \tan}^{ - 1}  \theta) =  \theta}} \\


mddilshad11ab: awesome:)
Answered by rocky200216
50

\huge\bf{\underbrace{\gray{TO\:FIND:-}}}

  • The value of \bf{\tan{\dfrac{1}{2}}\:\Big[\:\sin^{-1}\:\dfrac{2x}{1\:+\:x^2}\:+\:\cos^{-1}\:\dfrac{1\:-\:y^2}{1\:+\:y^2}\:\Big]\:}

 \\

\huge\bf{\underbrace{\gray{SOLUTION:-}}} \\

✞︎ We solve \bf\red{\sin^{-1}\:\dfrac{2x}{1\:+\:x^2}\:} & \bf\red{\cos^{-1}\:\dfrac{1\:-\:y^2}{1\:+\:y^2}\:} separately .

 \\

Solving \bf{\underline{\gray{\sin^{-1}\:\dfrac{2x}{1\:+\:x^2}\:}}} :-

  • \bf\red{Putting}, x = tanθ

\rm{:\implies\:\sin^{-1}\:\Big(\dfrac{2\tan{\theta}}{1\:+\:\tan^2{\theta}}\Big)\:} \\

  • Using, 1 + tan²θ = sec²θ

\rm{:\implies\:\sin^{-1}\:\Big(\dfrac{2\tan{\theta}}{\sec^2{\theta}}\Big)\:} \\

\rm{:\implies\:\sin^{-1}\:\Big(\dfrac{2\:\sin{\theta}/\cos{\theta}}{1/\cos^2{\theta}}\Big)\:} \\

\rm{:\implies\:\sin^{-1}\:\Big(2\:\dfrac{\sin{\theta}}{\cos{\theta}}\times{\cos^2{\theta}}\Big)\:} \\

\rm{:\implies\:\sin^{-1}\:(2\:\sin{\theta}.\cos{\theta})\:} \\

  • Using, 2 sinθ . cosθ = sin2θ

\rm{:\implies\:\sin^{-1}\:(\sin2{\theta})\:} \\

  • Using, \bf\red{\sin^{-1}\:(\sin2{\theta})\:} =

\bf\green{:\implies\:2\theta} \\

 \\

Solving \bf{\underline{\gray{\cos^{-1}\:\dfrac{1\:-\:y^2}{1\:+\:y^2}\:}}} :-

  • \bf\red{Putting}, y = \bf\purple{\tan{\alpha}} \\

\rm{:\implies\:\cos^{-1}\:\Big(\dfrac{1\:-\:\tan^2{\alpha}}{1\:+\:\tan^2{\alpha}}\Big)\:} \\

  • Using, \bf\purple{1\:+\:\tan^2{\alpha}\:=\:\sec^2{\alpha}\:} \\

\rm{:\implies\:\cos^{-1}\:\Big(\dfrac{1\:-\:\tan^2{\alpha}}{\sec^2{\alpha}}\Big)\:} \\

\rm{:\implies\:\cos^{-1}\:\Big(\dfrac{1\:-\:\sin^2{\alpha}/\cos^2{\alpha}}{1/\cos^2{\alpha}}\Big)\:} \\

\rm{:\implies\:\cos^{-1}\:\Big(\dfrac{\cos^2{\alpha}\:-\:\sin^2{\alpha}}{\cos^2{\alpha}}\:\times{\cos^2{\alpha}}\Big)\:} \\

\rm{:\implies\:\cos^{-1}\:(\cos^2{\alpha}\:-\:\sin^2{\alpha})\:} \\

  • Using, \bf\purple{\cos^2{\alpha}\:-\:\sin^2{\alpha}\:=\:\cos2{\alpha}\:} \\

\rm{:\implies\:\cos^{-1}\:(\cos2{\alpha})\:} \\

\bf\green{:\implies\:2{\alpha}\:} \\

 \\

☯︎ Now, we have

\bf{\tan{\dfrac{1}{2}}\:\Big[\:\sin^{-1}\:\dfrac{2x}{1\:+\:x^2}\:+\:\cos^{-1}\:\dfrac{1\:-\:y^2}{1\:+\:y^2}\:\Big]\:} \\

\rm{:\implies\:\tan{\dfrac{1}{2}}\:[2\theta\:+\:2\alpha]\:} \\

\rm{:\implies\:\tan\:[\theta\:+\:\alpha]\:} \\

\rm{:\implies\:\dfrac{\tan{\theta}\:+\:\tan{\alpha}}{1\:-\:\tan{\theta}.\tan{\alpha}}\:} \\

  • Using,
  1. x = tanθ
  2. y = \bf{\tan{\alpha}} \\

\bf\blue{:\implies\:\dfrac{x\:+\:y}{1\:-\:xy}\:}


mddilshad11ab: perfect explaination ✔️
Similar questions