Math, asked by Amberkhemani, 3 months ago

solve
 {x}^{2}  + 2x - 2 = 0

Answers

Answered by sakshamjadhav007
0

Answer:

this is the answer

I hope this is the right answer

Attachments:
Answered by steffiaspinno
0

The roots the equation x² + 2x -2 =0 are  -1+√3 and  -1-√3

Explanation:

Given:

x² + 2x -2 =0

To find:

The zeros of the quadratic equation

Formula:

\alpha =\frac{-b+\sqrt{b^{2}-4ac}  }{2a}

\beta  =\frac{-b-\sqrt{b^{2}-4ac}  }{2a}

We know that

a = coefficient of x²

b = coefficient of x

c = constant

a = 1

b = 2

c = -2

Substitute the values in the formula

\alpha =\frac{-b+\sqrt{b^{2}-4ac}  }{2a}

\alpha =\frac{-2+\sqrt{(2)^{2}-4(1)(-2)}  }{2(1)}

\alpha =\frac{-2+\sqrt{4-4(-2) } }{2}

\alpha =\frac{-2+\sqrt{4-(-8)}  }{2}

\alpha =\frac{-2+\sqrt{4+8 } }{2}

\alpha =\frac{-2+\sqrt{12}  }{2}

\alpha =\frac{-2+\sqrt{2\times2\times3}  }{2}

\alpha =\frac{-2+2\sqrt{3}  }{2}

\alpha =\frac{2(-1+1\sqrt{3})  }{2}

\alpha =\frac{2(-1+1\sqrt{3})  }{2}

α = -1+√3

\beta  =\frac{-b-\sqrt{b^{2}-4ac}  }{2a}

\beta  =\frac{-2-\sqrt{(2)^{2}-4(1)(-2)}  }{2(1)}

\beta  =\frac{-2-\sqrt{4-4(-2) } }{2}

\beta =\frac{-2-\sqrt{4-(-8)}  }{2}

\beta =\frac{-2-\sqrt{4+8 } }{2}

\beta  =\frac{-2-\sqrt{12}  }{2}

\beta  =\frac{-2-\sqrt{2\times2\times3}  }{2}

\beta  =\frac{-2-2\sqrt{3}  }{2}

\beta  =\frac{2(-1-1\sqrt{3})  }{2}

β = -1-√3

The roots the equation x² + 2x -2 =0 are  -1+√3 and  -1-√3

Similar questions