Math, asked by luckysharma6889, 8 months ago

Solve that the following pair of linear equations are consistent or inconsistent Sx-3y11, 10 x 6--22​

Answers

Answered by MaheswariS
1

\underline{\textsf{Given:}}

\mathsf{5x-3y=11}

\mathsf{10x-6y=22}

\underline{\textsf{To find:}}

\textsf{The solution of the system of equations}

\underline{\textsf{Solution:}}

\textsf{Consider,}

\mathsf{5x-3y=11}

\mathsf{10x-6y=22}

\textsf{Here,}

\mathsf{a_1=5,\,b_1=-3,\,c_1=11}

\mathsf{a_2=10,\,b_2=-6,\,c_2=22}

\mathsf{a_1\,b_2-a_2\,b_1=-30+30=0}

\textsf{But,}

\mathsf{\dfrac{a_1}{a_2}=\dfrac{b_1}{b_2}=\dfrac{c_1}{c_2}=\dfrac{1}{2}}

\implies\textsf{Coefficients are proportional}

\therefore\textsf{The given system of equations is consistent and}

\textsf{has infinitely many solutions}

\textsf{In this case,system is reduced to a single equation}

\mathsf{5x-3y=11}

\textsf{Take,}\;\mathsf{y=k}

\mathsf{5x=3k+11}

\implies\mathsf{x=\dfrac{3k+11}{5}}

\underline{\textsf{Answer:}}

\textsf{The solution is}\;

\mathsf{x=\dfrac{3k+11}{5},\;y=k}\;\textsf{where}\;\mathsf{k{\in}R}

Answered by pulakmath007
19

\displaystyle\huge\red{\underline{\underline{Solution}}}

FORMULA TO BE IMPLEMENTED

SOLVE USING DETERMINANT METHOD

A given set of equations are said to be Consistent if

Either one of the below is true

1. Unique Solution when

 \Delta \ne \: 0

2. Infinite number of solutions when

  \Delta = \Delta_1 =  \Delta_2 = 0

 \:   \sf{Where  \:   \:  \Delta  \: , \:  \Delta_1 \:  , \:   \Delta_2\: } have \:  usual \:  notations

CALCULATION

The given set of equations are

5x - 3y = 11 \:  \:  \:  \:  \: ........(1)

10x - 6y = 22 \:  \:  \: .........(2)

Which can be rewritten in AX = B form as below :

 \displaystyle\begin{pmatrix} 5 &  - 3\\ 10 &  - 6 \end{pmatrix} \begin{pmatrix} x\\ y \end{pmatrix}  = \begin{pmatrix} 11\\ 22 \end{pmatrix}

Here

 \Delta = \displaystyle\begin{vmatrix} 5 &  - 3\\ 10 &  - 6 \end{vmatrix} =  - 30 + 30 = 0

 \Delta_1 = \displaystyle\begin{vmatrix} 5 &  11\\ 10 &  22 \end{vmatrix} = 110 - 110 = 0

 \Delta_2 = \displaystyle\begin{vmatrix} 11 &  - 3\\ 22 &  - 6 \end{vmatrix} =  - 66 + 66 = 0

So

  \Delta = \Delta_1 =  \Delta_2 = 0

RESULT

Hence the given set of equations are Consistent

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

ADDITIONAL INFORMATION

The given set of equations have infinite number of solutions

Similar questions