Math, asked by Anonymous, 4 days ago

solve the above attachment guys






For several days I was in offline because of my exams.
Hru all​

Attachments:

Answers

Answered by XxitzZBrainlyStarxX
8

Question:-

 \sf \large Find \:  \int \frac{sec \: x}{sec \: x + tan \: x} dx.

Given:-

 \sf \large \int \frac{sec \: x}{sec \: x + tan \: x} dx.

To Find:-

  \sf \large \int \frac{sec \: x}{sec \: x + tan \: x} dx.

Solution:-

 \sf \large I =   \int\frac{sec \: x}{sec \: x + tan \: x} dx

 \sf \large I =  \int \frac{sec \: x}{sec \: x + tan \: x}  \times  \frac{sec \: x - tan \: x}{sec \: x - tan \: x} dx

 \sf \large I =  \int \frac{sec \: x(sec \: x - tan \: x)}{sec {}^{2}x - tan {}^{2} x } dx \\  \\  \sf \large \color{red}( \because(a - b)(a + b) = a {}^{2}   - b {}^{2} )

 \sf \large I =  \int(sec {}^{2} x - sec \: x \: tan \: x)dx \\  \\  \sf \large \color{red}( \because \: sec {}^{2} x - tan {}^{2} x = 1)

 \sf \large I =   \int sec {}^{2} x \: dx -  \int sec \: x \: tan \: x \:  \: dx

 \sf \large I = tan \: x - sec \: x + c \\  \\  \sf \large \color{red}( \because  \int sec {}^{2}  \theta d \theta = tan \theta \\  \sf \large \color{red} \int sec \theta \: tan \theta \: d \theta = sec \theta )

Answer:-

 \sf \large \blue {\int \frac{sec \: x}{sec \: x + tan \: x}dx = tan \: x - sec \: x + c.}

Hope you have satisfied.

Similar questions