solve the above problem
Answers
Step-by-step explanation:
Given:
To find:
How to Solve?
Basically, I we simplify given we will get the value of x/y then Try to solve To find by the help of formula and put the value you get before,
Solution:
Now,
See in the attachment,
Formula Used
Componendo and Dividendo
Answer:
\dfrac{76}{49}
49
76
Step-by-step explanation:
Given:
\dfrac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = 2 \dfrac{1}{8}
x
2
−y
2
x
2
+y
2
=2
8
1
To find:
\dfrac{ {x}^{3} + {y}^{3} }{ {x}^{3} - {y}^{3} }
x
3
−y
3
x
3
+y
3
How to Solve?
Basically, I we simplify given we will get the value of x/y then Try to solve To find by the help of formula and put the value you get before,
Solution:
\begin{gathered} \frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = 2 \frac{1}{8} \\ \\\frac{ {x}^{2} + {y}^{2} }{ {x}^{2} - {y}^{2} } = \frac{17}{8} \\ \\ \sf [Applying \: componendo\: and\: dividendo]\\ \\ \frac{ {x + y}^{2} + {x}^{2} - {y}^{2} }{ {x}^{2} + {y}^{2} - {x}^{2} + {y}^{2} } = \frac{17 + 8}{17 - 8} \\ \\ \frac{2 {x}^{2} }{2 {y}^{2} } = \frac{25}{9} \\ \\ \frac{ {x}^{2} }{ {y}^{2} } = \frac{25}{9} \\ \\ \frac{x}{y} = \frac{5}{3} \implies \: x = \frac{5y}{3} \end{gathered}
x
2
−y
2
x
2
+y
2
=2
8
1
x
2
−y
2
x
2
+y
2
=
8
17
[Applyingcomponendoanddividendo]
x
2
+y
2
−x
2
+y
2
x+y
2
+x
2
−y
2
=
17−8
17+8
2y
2
2x
2
=
9
25
y
2
x
2
=
9
25
y
x
=
3
5
⟹x=
3
5y
Now,
See in the attachment,
Formula Used
Componendo and Dividendo
\begin{gathered} \frac{a}{b} = \frac{c}{d} \implies \frac{a+b}{a-b} = \frac{c+d}{c-d} \\ \\ a³ + b³ = (a+b)³ - 3ab(a+b) \\ \\ a³ - b³ = (a-b)³ + 3ab(a-b) \end{gathered}
b
a
=
d
c
⟹
a−ba+b =c−dc+da³+b³=(a+b)³−3ab(a+b)a³−b³=(a−b)³+3ab(a−b)