Math, asked by Anusha5683, 12 hours ago

Solve the above question

Attachments:

Answers

Answered by suhail2070
1

Step-by-step explanation:

 \frac{ \sqrt{1 -  \sin( \alpha ) } }{ \sqrt{1 +  \sin( \alpha ) } }  =  \sqrt{ \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) } }  \\  \\  =   \sqrt{ \frac{1 -  \sin( \alpha ) }{1 +  \sin( \alpha ) } }   \times  \frac{ \sqrt{1  -  \sin( \alpha ) } }{ \sqrt{1 -  \sin( \alpha ) } }  \\  \\  =  \frac{1 -  \sin( \alpha ) }{ \sqrt{1 -  { \sin( \alpha ) }^{2} } }  \\  \\  =  \frac{1 -  \sin( \alpha ) }{ \sqrt{ { \cos( \alpha ) }^{2} } }  \\  \\  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }  \\  \\  =  \frac{1 -  \sin( \alpha ) }{ \cos( \alpha ) }   \times  \frac{1 +  \sin( \alpha ) }{1 +  \sin( \alpha ) }  \\  \\  =  \frac{1 -  { \sin( \alpha ) }^{2} }{ \cos( \alpha )  \times (1 +  \sin( \alpha )) }  \\  \\  =  \frac{ { \cos( \alpha ) }^{2} }{ \cos( \alpha ) \times (1 +  \sin( \alpha ))  }  \\  \\  =  \frac{ \cos( \alpha ) }{1 +  \sin( \alpha ) }  = rhs.

Similar questions