Math, asked by Anonymous, 2 days ago

Solve The Above question -,-​

Attachments:

Answers

Answered by mathdude500
6

Given Question is

If the equation

\rm \:  {(3x)}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0 \: have \: equal \: roots,

then value of k is

 \:  \:  \:  \:  \: (a) \:  - 2

 \:  \:  \:  \:  \: (b) \:  -   \dfrac{1}{2}

 \:  \:  \:  \:  \: (c) \:\dfrac{1}{2}

 \:  \:  \:  \:  \: (d) \:0

 \green{\large\underline{\sf{Solution-}}}

Given quadratic equation is

\rm :\longmapsto\:\rm \:  {(3x)}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

can be rewritten as

\rm :\longmapsto\:\rm \:  {9x}^{2} + \bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15  \bigg)x + 4 = 0

Concept Used :-

Nature of roots :-

Let us consider a quadratic equation ax² + bx + c = 0, then nature of roots of quadratic equation depends upon Discriminant (D) of the quadratic equation.

If Discriminant, D > 0, then roots of the equation are real and unequal.

If Discriminant, D = 0, then roots of the equation are real and equal.

If Discriminant, D < 0, then roots of the equation are unreal or complex or imaginary.

Where,

Discriminant, D = b² - 4ac

Let's Solve this problem now!!!

On comparing with quadratic equation ax² + bx + c = 0, we get

\red{\rm :\longmapsto\:a = 9}

\red{\rm :\longmapsto\:b = 27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15}

\red{\rm :\longmapsto\:c = 4}

Since, Discriminant, D = 0

\rm \implies\: {b}^{2} - 4ac = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 4 \times 4 \times 9 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  - 144 = 0

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  = 144

\rm :\longmapsto\: {\bigg(27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15\bigg)}^{2}  =  {12}^{2}

\rm \implies\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 =  \:  \pm \: 12

Case - 1

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = -  12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = -  12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 3

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{9}

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } = \dfrac{1}{ {3}^{2} }

\rm \implies\:{\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{ - 2}

\rm \implies\:\dfrac{1}{k}  =  - 2

\bf\implies \:k \:  =  \:  -  \: \dfrac{1}{2}

So, option (b) is Correct.

Case - 2

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } - 15 = 12

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 12 + 15

\rm :\longmapsto\:27 \times  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 27

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } = 1

\rm :\longmapsto\:  {\bigg[3\bigg]}^{ \dfrac{1}{k} } =  {3}^{0}

\rm \implies\:\dfrac{1}{k}  =0

which is not possible.

Similar questions