Math, asked by garimamaan95, 7 months ago

solve the cubic equation
x3-4x=53117

Answers

Answered by aryaa27
1

Step-by-step explanation:

x3-4x= 53117

3x-4x= 53117

-x= 53117

x= -53117

hope it helps :)

do mark my answer as brainliest :)

Answered by SrijanShrivastava
0

To find :

values of x such that:

f(x) =  {x}^{3}  - 4x - 53117 = 0

Solution:

Before finding the roots, let us find the nature roots.

So, We must calculate the

Discriminant [f(x),x]

Δ = –27(–53117)²–4(–4)³ = -76178223347 < 0

as, Δ < 0 ⇔ x₁ ∈ ℝ and, x₂,₃ ∉ ℝ

As, there exists only one real root, so we must use the algebraic cubic formula for the roots.

x_{1} =   \frac{ \omega _{k}. \sqrt[3]{ - 108( - 53117) + 12\sqrt{3(76178223347)} }  +   \omega _{k} {}^{2} . \sqrt[3]{ - 108( - 53117) - 12 \sqrt{3(76178223347)} }  }{6}

After Simplification , all the roots are

 x_{1} =   \frac{ \sqrt[3]{5736636 + 12 \sqrt{228534670041} } +  \sqrt[3]{5736636 - 12 \sqrt{228534670041} }  }{6}

x _{2,3} =   \frac{ -  \sqrt[3]{5736636 + 12 \sqrt{228534670041} }  -  \sqrt[3]{5736636 - 12 \sqrt{228534670041} } +  \sqrt{3}  i(   ±{ \sqrt[3]{5736636 + 12 \sqrt{228534670041} } ∓ \sqrt[3]{5736636 - 12 \sqrt{228534670041} }  }) }{12}

where, i = √(–1)

and, ∛(z) represents the cube root.

Similar questions