Math, asked by rachita07, 1 year ago

Solve the derivative by quotient rule :-

y \:  =  \:  \frac{ {x}^{5}  -  \: cosx}{sinx}


mohit8102751: hii
Iloveyouji45: hello

Answers

Answered by shadowsabers03
33

Quotient rule implies,

\boxed{\begin{minipage}{9.83 cm}\large \begin{aligned}\textsf{If}\ \ \ &\ \ \ y=\dfrac{f(x)}{g(x)}\ , \\ \\ \textsf{then}&\ \ \ y'=\dfrac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}\end{aligned}\end{minipage}}

Given that,

y=\dfrac{x^5-\cos x}{\sin x}

From this, we get,

\rightarrow\ f(x)=x^5-\cos x\\ \\ \rightarrow\ g(x)=\sin x

Now we find  f'(x)  and  g'(x).  

\rightarrow\ f'(x)=5x^4+\sin x\\ \\ \rightarrow\ g'(x)=\cos x

So,

\begin{aligned}y'&=\ \ \frac{g(x)f'(x)-f(x)g'(x)}{(g(x))^2}\\ \\ y'&=\ \ \frac{\sin x(5x^4+\sin x)-(x^5-\cos x)\cos x}{\sin^2x}\\ \\ y'&=\ \ \frac{5x^4\sin x+\sin^2x-x^5\cos x+\cos^2x}{\sin^2x}\\ \\ \\ \Large \text{$y'$}&=\ \ \Large \text{$\frac{-x^5\cos x+5x^4\sin x+1}{\sin^2x}$}\end{aligned}

Hence Derived!


IITGENIUS1234: please delete my answer
IITGENIUS1234: please don't delete it
Answered by IITGENIUS1234
18

\sf{Let\:f(x)={\dfrac{{x}^{5} - \: cosx}{sinx}}}

\sf {Let\:u= x^{5} - cosx\:and\:v = sinx}

\sf {f(x) = ({\dfrac{u}{v}})}

•°• \sf {f^{'}(x) = {\dfrac{u}{v}}^{'}}

\sf{Using\:Quotient\:Rule,}

\sf {f^{'}(x) = ({\dfrac{u^{'}v - v^{'}u}{v^{2}}})}

\sf{\underline{Finding\:u^{'}\:and\:v^{'}}}

\sf{u = x^{5} - cosx}

\sf{u^{'} = 5 . x^{5 - 1} - ( - sinx )}

\sf{(Derivative\:of\:x^{n}\:is\:nx^{n-1}\:and\: Derivative\: of \:cosx = - sinx)}

\sf {v = sinx}

\sf{v^{'} = cos x} \sf{(Derivative\:of\:sinx = cosx)}

\sf{Now,}

\sf {f^{'}(x) = ({\dfrac{u}{v}})^{'}}

\sf{= {\dfrac{u^{'}v - v^{'}u}{v^{2}}}}

\sf {= \dfrac {(5x^{4} + sinx) sinx - (cosx)(x^{5} - cosx)}{sin^{2}x}}

\sf {= \dfrac {5x^{4} sinx + sin^{2}x - cosx . x^{5} + cos^{2}x}{sin^{2}</p><p>x}}

\sf {= \dfrac {- x^{5} cosx + 5x^{4}sinx + sin^{2}x + cos^{2}x}{sinx^{2}}}

\sf {= \dfrac {- x^{5} cosx + 5x^{4}sinx + 1}{sinx^{2}}} \sf {(sin^{2}x + cos^{2}x = 1)}

 \sf {(sin^{2}x + cos^{2}x = 1)}

\sf{Thus, f^{'}(x) = \dfrac {- x^{5} cosx + 5x^{4}sinx + 1}{sinx^{2}}}

Similar questions