Math, asked by nayan8590, 10 months ago

solve the derivative rule sin 3x + 7x + 1/x​

Answers

Answered by BendingReality
30

Answer:

3 . cos 3 x + 7 - 1 / x²

Step-by-step explanation:

Given :

f ( x ) = sin 3 x + 7 x + 1 / x

We know :

d / d x ( sin x )' = cos x

d / d x ( 1 / x ) = - 1 / x²

Now :

Diff. w.r.t. x we get :

= > f' ( x ) = cos 3 x ( 3 x )' + 7 + ( - 1 / x² )

= > f' ( x ) = cos 3 x ( 3 x )' + 7 - 1 / x²

= > f' ( x ) = 3 . cos 3 x + 7 - 1 / x²

Therefore , we get required answer!

Answered by mrmajnu51
2

Step-by-step explanation:

Answer ✍️

____________

  • 3 . cos 3 x + 7 - 1 / x²

Given :

  • f ( x ) = sin 3 x + 7 x + 1 / x

We know :

  • d / d x ( sin x )' = cos x

  • d / d x ( 1 / x ) = - 1 / x²

Now :

Diff. w.r.t. x we get :

➡️ f' ( x ) = cos 3 x ( 3 x )' + 7 + ( - 1 / x² )

➡️f' ( x ) = cos 3 x ( 3 x )' + 7 - 1 / x²

➡️f' ( x ) = 3 . cos 3 x + 7 - 1 / x²

Therefore , we get required answer!

hope this helps you

Similar questions