.
solve the differential equation
cos(x+y) dy =dx
Answers
Answer:
The required equation is \tan (x+y)-\sec (x+y)=x+Ctan(x+y)−sec(x+y)=x+C
Step-by-step explanation:
Given : Expression \frac{dy}{dx}=\sin(x+y)
dx
dy
=sin(x+y)
To find : Solve for differential equation?
Solution :
\frac{dy}{dx}=\sin(x+y)
dx
dy
=sin(x+y) ………..(1)
Let, x+y=u
Differentiate with respect to x,
1+\frac{dy}{dx}=\frac{du}{dx}1+
dx
dy
=
dx
du
\frac{dy}{dx}=\frac{du}{dx}-1
dx
dy
=
dx
du
−1 .........(2)
From equation (1) and (2),
\frac{du}{dx}-1 =sin u
dx
du
−1=sinu
\frac{du}{dx}=sin u+1
dx
du
=sinu+1
(\frac{1}{1+\sin u})du=dx(
1+sinu
1
)du=dx
\frac{1-\sin u}{(1+\sin u)(1-\sin u)}du=dx
(1+sinu)(1−sinu)
1−sinu
du=dx
\frac{1-\sin u}{\cos^2u}du=dx
cos
2
u
1−sinu
du=dx
(\sec^2 u - \sec u.\tan u)du=dx(sec
2
u−secu.tanu)du=dx
Integrate both side,
\tan u-\sec u=x+Ctanu−secu=x+C
\tan (x+y)-\sec (x+y)=x+Ctan(x+y)−sec(x+y)=x+C
Therefore, The required equation is \tan (x+y)-\sec (x+y)=x+Ctan(x+y)−sec(x+y)=x+C