Math, asked by pvasave943, 1 year ago

solve the differential equation dy/dx=x2y+y​

Answers

Answered by shadowsabers03
10

We're given to solve the differential equation,

\longrightarrow\dfrac{dy}{dx}=x^2y+y

or,

\longrightarrow\dfrac{dy}{dx}=\left(x^2+1\right)y

\longrightarrow\dfrac{1}{y}\,dy=\left(x^2+1\right)\ dx

Integrating,

\displaystyle\longrightarrow\int\dfrac{1}{y}\,dy=\int\left(x^2+1\right)\ dx

\displaystyle\longrightarrow\log|y|-\log|C|=\dfrac{x^3}{3}+x

\displaystyle\longrightarrow\log\left|\dfrac{y}{C}\right|=\dfrac{x^3}{3}+x

Taking antilog,

\displaystyle\longrightarrow\dfrac{y}{C}=e^{\frac{x^3}{3}+x}

\displaystyle\longrightarrow\underline{\underline{y=Ce^{\frac{x^3}{3}+x}}}

This is the solution to the differential equation, where C is an arbitrary constant.

Answered by mathdude500
3

\large\underline\purple{\bold{Solution :-  }}

\rm :\implies\:\dfrac{dy}{dx}  =  {x}^{2} y + y

\rm :\implies\:\dfrac{dy}{dx}  = y( {x}^{2}  + 1)

\rm :\implies\:1/y \: dy \:  = ( {x}^{2}  + 1)dx

So, on integrating both sides, we get

\rm :\implies\: \int \: 1/y \: dy \:  =  \int \: ( {x}^{2}  + 1)dx

\rm :\implies\:logy  = \dfrac{ {x}^{3} }{3}  + x + c

Similar questions