Math, asked by PragyaTbia, 1 year ago

Solve the differential equation: \sec^{2}x\cdotp\tan ydx+\sec^{2}y\cdotp\tan xdy=0

Answers

Answered by hukam0685
0
To solve the differential equation:

\sec^{2}x\cdotp\tan ydx+\sec^{2}y\cdotp\tan xdy=0\\\\,

first separate the variables than integrate both sides,

\sec^{2}x\cdotp\tan ydx+\sec^{2}y\cdotp\tan xdy=0 \\ \\ \sec^{2}x\cdotp\tan ydx = - \sec^{2}y\cdotp\tan xdy \\ \\ \frac{\sec^{2}x}{tan \: x} dx = \frac{ - \sec^{2}y}{tan \: y} dy \\ \\
As we know that
 \frac{d \: tan \: x}{dx} = {sec}^{2} x \\

now integrate it with substitute method

\int\frac{\sec^{2}x}{tan \: x} dx = \int\frac{ - \sec^{2}y}{tan \: y} dy \\ \\ \\ let \: tan \: x = t \\ \\ {\sec^{2}x} \: dx = dt \\ \\ \: substitute \: in \: both \: sides \\ \\ \int\frac{1}{t} dt =- \int \frac{1}{z} dz \\ \\ log \: t = - log z + c \\ \\ log \: tan \: x = - log \: tan \: y + log \: c \\ \\ \\ log \: tan \: x = log \: cot \: y + log \: c \\ \\ log \: tan \: x = log \: c (\: cot \: y) \\ \\ tan \: x = c \: (cot \: y) \\ \\ cot \: y = \frac{tan \: x}{c} \\

is the solution.
Similar questions