Math, asked by chandavedic, 15 hours ago

Solve the differential equation

x \frac{dy}{dx}  = y - xtan( \frac{y}{x}) \: given \: that \: y(1) =  \frac{\pi}{4}

Answers

Answered by mathdude500
3

\large\underline{\sf{Solution-}}

Given differential equation is

\rm \: x\dfrac{dy}{dx} = y - xtan\bigg(\dfrac{y}{x} \bigg) \\

can be rewritten as

\rm \: \dfrac{dy}{dx} =  \frac{y}{x}  - tan\bigg(\dfrac{y}{x} \bigg) -  -  - (1) \\

Now, to evaluate this Differential equation, we use method of Substitution

So, Substitute y = vx ----(2)

On substituting the value in equation (1), we get

\rm \: \dfrac{d}{dx}(vx) =  \frac{vx}{x}  - tan\bigg(\dfrac{vx}{x} \bigg) \\

\rm \: v\dfrac{d}{dx}x + x\dfrac{d}{dx}v = v - tanv \\

\rm \: v \times 1 + x\dfrac{dv}{dx} = v - tanv \\

\rm \: v + x\dfrac{dv}{dx} = v - tanv \\

\rm \:  x\dfrac{dv}{dx} =  - tanv \\

On separating the variables, we get

\rm \:  \dfrac{dv}{tanv} =  -  \frac{dx}{x}  \\

\rm \:  cotv \: dv =  -  \frac{dx}{x}  \\

On integrating both sides w. r. t. x, we get

\rm \: \displaystyle\int\rm  cotv \: dv =  -  \displaystyle\int\rm \frac{dx}{x}  \\

\rm \:  log(sinv)  =  -  log(x)  +  log(c)  \\

\rm \:  log(sinv) + log(x) =  log(c)  \\

\rm \:  log(x \: sinv) =  log(c)  \\

\:\rm \: x \: sinv =  c \\

\:\rm \: x \: sin\bigg(\dfrac{y}{x} \bigg)  =  c -  -  - (3) \\

Now, it is given that  \rm \: x=1\:and\:y=\dfrac{\pi}{4}

So, on substituting these values in above equation (3), we get

\rm \: 1 \times sin\bigg(\dfrac{\pi}{4} \bigg) = c \\

\bf\implies \:c \:  =  \: \dfrac{1}{ \sqrt{2} }  \\

So, on substituting the value of c, in equation (3),

The particular solution is given by

\bf\implies \:\:\bf \: x \: sin\bigg(\dfrac{y}{x} \bigg)  =  \dfrac{1}{ \sqrt{2} }  \\

\rule{190pt}{2pt}

Formulae Used :-

\boxed{ \rm{ \:\dfrac{d}{dx}(uv) = u\dfrac{d}{dx}v \:  +  \: v\dfrac{d}{dx}u \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  \frac{1}{x} \: dx \:  =  \:  log(x)  + c \: }} \\

\boxed{ \rm{ \:\displaystyle\int\rm  cotx \: dx \:  =  \:  log(sinx)  + c \: }} \\

\boxed{ \rm{ \: log(x) +  log(y) =  log(xy)  \: }} \\

Similar questions