Math, asked by PragyaTbia, 1 year ago

Solve the differential equation: y^{3}- \frac{dy}{dx}= x^{2} \frac{dy}{dx}

Answers

Answered by hukam0685
0
To solve the differential equation:
y^{3}- \frac{dy}{dx}= x^{2} \frac{dy}{dx}\\

first separate the variables

y^{3}- \frac{dy}{dx}= x^{2} \frac{dy}{dx} \\ \\ {y}^{3} = {x}^{2} \frac{dy}{dx} <br />+ \frac{dy}{dx} \\ \\ {y}^{3} = \frac{dy}{dx} ( {x}^{2} +1) \\ \\ \int\frac{1}{ {x}^{2} +1} dx = \int\frac{1}{ {y}^{3} } dy \\ \\
integrate both sides

tan^{-1}x = - \frac{1}{2 {y}^{2} } + c \\ \\ - 1 + 2c {y}^{2} = 2c {y}^{2}×tan^{-1}x \\ \\2 c {y}^{2} =2c {y}^{2}tan^{-1}x+1 \\
Similar questions