Math, asked by dcmallik1396, 1 month ago

Solve the Differential Equation
xdx + ydy + (x²+y²)dy =0​

Answers

Answered by IamIronMan0
3

Step-by-step explanation:

xdx + ydy + ( {x}^{2}  +  {y}^{2} )dy = 0 \\  \\ d(xy) =   - ( {x}^{2}  +  {y}^{2} )dy \\  \\ d(xy) =  -   \frac{1}{ {y}^{2} }  ( {x}^{2}  {y}^{2}  + 1)dy \\  \\  \frac{d(xy)}{1 + (xy) {}^{2} }  =  \frac{ - 1}{ {y}^{2} } dy

Let xy =z and integrate both sides

 \int \frac{dz}{1 +  {z}^{2} }  = -   \int \frac{1}{ {y}^{2} } dy \\  \\  \tan {}^{ - 1} (z)  =  \frac{1}{y}  + c \\  \\  \tan {}^{ - 1} (xy)  =  \frac{1}{y}  + c

Similar questions
Math, 9 months ago