Math, asked by brainlybrainme, 11 months ago

solve the equation 1/x+1+2/x+2= 4/x+4 by quadratic formula
dont answer for points if u answer unwanted I will block ur account​

Attachments:

Answers

Answered by Anonymous
17

\bf{\Huge{\boxed{\tt{\green{ANSWER\::}}}}}

\bf{\Large{\underline{\bf{Given\::}}}}

\sf{\Large{\frac{1}{x+1} \:+\:\frac{2}{x+2} \:=\:\frac{4}{x+4}} }

\bf{\Large{\underline{\tt{\pink{Explanation\::}}}}}

\longmapsto\sf\frac{1}{x+1} \:+\:\frac{2}{x+2} \:=\:\frac{4}{x+4} }

\longmapsto\sf{\frac{1(x+2)+2(x+1)}{(x+1)(x+2)} \:=\:\frac{4}{x+4} }

\longmapsto\sf{\frac{x+2+2x+2}{(x+1)(x+2)} \:=\:\frac{4}{x+4} }

\longmapsto\sf{\frac{3x+4}{(x+1)(x+2)}\:=\:\frac{4}{x+4}}

\longmapsto\sf{\frac{3x+4}{x^{2} +2x+x+2} \:=\:\frac{4}{x+4} }

\longmapsto\sf{\frac{3x+4}{x^{2}+3x+2 } \:=\:\frac{4}{x+4} }

\longmapsto\sf{(x+4)(3x+4)\:=\:4(x^{2} +3x+2)}

\longmapsto\sf{3x^{2} \:+\:4x\:+\:12x\:+\:16\:=\:4x^{2} +12x+8}

\longmapsto\sf{3x^{2} +16x+16=4x^{2} +12x+8}

\longmapsto\sf{3x^{2} -4x^{2} +16x-12x+16-8\:=\:0}

\longmapsto\sf{-x^{2} +4x+8\:=\:0}

\longmapsto\sf{-(x^{2} -4x-8)\:=\:0}

\longmapsto\sf{\red{x^{2} -4x-8\:=\:0}}

________________________________

Using Sridharacharya formula:

\leadsto\sf{\Large{\boxed{\pink{x\:=\:\frac{-b \pm \sqrt{b^{2}-4ac } }{2a} }}}}

Compare this equation with ax²+bx+c=0, we get

  • a = 1
  • b = -4
  • c = -8

Therefore,

\longmapsto\sf{x\:=\:\frac{-(-4)  ±  \sqrt{(-4)^{2}-4*1*(-8) } }{2*1} }

\longmapsto\sf{x\:=\:\frac{4      ±  \sqrt{16+32} }{2} }

\longmapsto\sf{x\:=\:\frac{4    ± \sqrt{48} }{2} }

\longmapsto\sf{x\:=\:\frac{4    ±  4\sqrt{3} }{2} }

\longmapsto\sf{\red{x\:=\:2     ±  2\sqrt{3} }}

Or

\mapsto\sf{x\:=\:2+\sqrt{3} \:\:\:\:\:\:or\:\:\:\:\:\:\:x\:=\:2-\sqrt{3} }

Similar questions