Math, asked by prachiyadavanshi, 5 months ago

Solve the equation ​

Attachments:

Answers

Answered by aryan073
4

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Answer :

______________________________________

\huge{\underline{\mathtt{\red{❤}\pink{N}\green{S}\blue{w}\purple{E}\orange{R}}}}

Q) Solve the equation :

 \:  \:  \:  \:  \:  \blue \bigstar \sf{ \bigg( \frac{3}{4} (7x - 1)  \bigg)-  \bigg(2x -  \frac{1 - x}{2}  \bigg) =  \frac{x + 3}{2} }

 \:  \:  \:  \:  \mapsto \sf{  \bigg( \frac{21x}{4} -   \frac{3}{4}  \bigg) - \bigg( \frac{(4x - x  + 1)}{4} \bigg)  =  \frac{x + 3}{2} }

 \:  \:  \:  \:  \:  \:  \:  \mapsto \sf{(21x - 3) - ((3x + 1)) =   \cancel   \frac{4}{2} (x + 3)}

 \:  \:  \:  \:  \:  \:  \mapsto \sf{(21x - 3 - 3x - 1) = 2(x + 3)}

 \:  \:  \:  \:  \:  \:  \mapsto \sf{18x - 4 = 2x + 6}

 \:  \:  \:  \:  \:  \:  \:  \mapsto \sf{18x - 4 - 2x - 6 = 0}

 \:  \:  \:  \:  \:  \:  \:  \mapsto \sf {16x - 10 = 0}

 \:  \:  \:  \:  \:  \:  \mapsto  \sf{x =  \frac{10}{16}  =  \cancel  \frac{10}{16}  =  \frac{5}{8} }

 \:  \:  \:  \:  \:  \:  \pink \bigstar \displaystyle \boxed{ \sf \red{x =  \frac{5}{8} is \: the \: correct \: answer}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Q)✪✪✪ Solve the equation :(⌒o⌒)

 \:  \:  \:  \:  \:  \:  \:  \:  \to \bf \green{ \frac{y + 5}{6}  -  \bigg( \frac{(14 - y}{2}  -  \frac{1}{4}  \bigg) =  \frac{2y - 7}{12} }

 \:  \:  \:  \:  \:  \:  \to \sf{ \ \frac{y + 5}{6}  -  \bigg( \frac{28 - 2y - 1}{4}  \bigg) =  \frac{2y + 7}{12} }

 \:  \:  \:  \:  \:  \to \displaystyle \sf \frac{y + 5}{6}  -  \frac{27 + 2y}{4 }=  \frac{2y + 7}{12}

 \:  \:  \:  \:  \ \:  \:  \to \displaystyle \sf { \frac{4(y + 5) - 6(27 +2y) }{24}  =  \frac{2y+ 7}{12} }

 \:  \: \:  \:  \:  \to \sf{\frac{4y + 20 - 162 - 12y}{24}  =  \frac{2y + 7}{12} }

 \:  \:  \:  \:  \:  \:  \to \displaystyle \sf{  \frac{ - 8y - 142}{24}  =  \frac{2x + 7}{12} }

 \:  \:  \:  \:  \:  \:  \to \displaystyle \sf{ \frac{ - 8y - 142 }{24}  =  \frac{4y + 14}{24} }

 \:  \:  \:  \:  \:  \:  \:  \to \sf{ - 8y - 142 - 4y - 14 = 0}

 \:  \:  \:  \:  \:  \:  \:  \to \sf{ - 12y - 156  = 0}

 \:  \:  \:  \:  \:  \:  \:  \mapsto \sf{y =   \cancel\frac{ - 156}{12}  =  - 13}

 \:  \:  \:  \:  \:  \:  \red \bigstar \boxed{ \bf \red{ y =  - 13 \: is \: the \: correct \: answer}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Similar questions