Solve the equation (2x-3)(6x-1)(3x-2)(x-2)-5=0
Answers
Answered by
4
Answer:
Step-by-step explanation:
(2x-3)(6x-1)(3x-2)(x-2)-5=0 solve the equation by partly factored polynomials
(2x-3)(6x-1)(3x-2)(x-2)-5=0
Rearranging we get
(2x-3)(3x-2)(6x-1)(x-2)-5=0
(6x^2-13x+6)(6x^2-3x+2)-5=0
Take 6x^2-13x=y
\implies\:(y+6)(y+12)-7=0
\implies\:(y^2+18y+72)-7=0
\implies\:y^2+18y+65=0
\implies\:(y+13)(y+5)=0
\implies\:y=-5,-13
case(i): y=-5
6x^2-13x=-5
6x^2-13x+5=0
(3x-5)(2x-1)=0
\implies\:x=\frac{1}{2},\frac{5}{3}
case(ii): y=-13
6x^2-13x=-13
6x^2-13x+13=0
x=\frac{13+\sqrt{169-312}}{12},\frac{13-\sqrt{169-312}}{12}
x=\frac{13+\sqrt{-143}}{12},\frac{13-\sqrt{-143}}{12}
x=\frac{13+i\sqrt{143}}{12},\frac{13-i\sqrt{143}}{12}
Similar questions