Math, asked by Nakahatra, 1 year ago

solve the equation :
2x⁴-5x²+3=0​


prernaraj: tough question
Rahul2486: x=1
prernaraj: Ooo yaa
prernaraj: not so tough

Answers

Answered by Shahoodalam
13

Hello Mate here is your answer below,

2x {}^{4}  -5 x {}^{2}  + 3 = 0 \\  =  > 2x {}^{4}  - 2x {}^{2}  - 3x {}^{2}  + 3 = 0 \\  =  > 2x {}^{2} (x {}^{2}  - 1) - 3(x {}^{2} - 1) = 0 \\  =  > (2x {}^{2}  - 3)(x {}^{2}  - 1) = 0 \\  =  > 2x {}^{2}  - 3 = 0 \\  =  > 2x {}^{2}  = 3 \\  =  > x {}^{2}   =  \frac{3}{2}  \\  =  > x =  \sqrt{ \frac{3}{2 } }  \\  \\ or  \\  \\  =  > x {}^{2}  - 1 = 0 \\  =  > x {}^{2}  = 1 \\  =  > x =  \sqrt{1}  \\  =  > x = 1

I hope that helps you

Answered by Anonymous
17

SOLUTION

 =  > 2x {}^{4}  - 5x {}^{2}  + 3 = 0 \\  \\  =  > 2x {}^{4}  - 2x {}^{2} - 3x {}^{2}  + 3 = 0 \\  \\  =  > 2x {}^{2} (x {}^{2}  - 1) - 3( {x}^{2}  - 1) = 0 \\  \\  =  > (2 {x}^{2}  - 3)( {x}^{2}  - 1) = 0 \\  \\  =  > ( \sqrt{2x}  +  \sqrt{3} )( \sqrt{2x}  -  \sqrt{3} )(x + 1)(x - 1) = 0(since \: a {}^{2}   - b {}^{2}  = (a + b)(a - b) \\  \\  =  > x =  \frac{  - \sqrt{3} }{ \sqrt{2} }  \: or \: x =  \frac{ \sqrt{3} }{ \sqrt{2} }  \: or \: x =  - 1 \: or \: x =  1. \\  \\  =  > x =  \frac{  - \sqrt{6} }{2}  \: or \: x =   \frac{ \sqrt{6} }{2}  \: or \: x =  - 1 \: or \: x = 1. \: answer

Hope it helps

Similar questions