Math, asked by PragyaTbia, 1 year ago

Solve the equation.
4 sin² x - 3 = 0

Answers

Answered by hukam0685
0
Solve the equation.
4 sin² x - 3 = 0

4 {sin}^{2} x = 3 \\ \\ {sin}^{2} x = \frac{3}{4} \\ \\ sin \: x = \sqrt{ \frac{3}{4} } \\ \\ sin \: x = ± \frac{ \sqrt{3} }{2} \\ \\ so \\ \\ sin \: x = \frac{ \sqrt{3} }{2} \\ \\ x = {sin}^{ - 1} ( \frac{ \sqrt{3} }{2} ) \\ \\ x = {sin}^{ - 1} ( sin \: ( \frac{\pi}{3} ) \\ \\ = \frac{\pi}{3} \: \: \: belongs \: to \: [\frac{ - \pi}{2} ,\frac{\pi}{2} ]\\

sin \: x = - \frac{ \sqrt{3} }{2} \\ \\ x = {sin}^{ - 1} ( \frac{ - \sqrt{3} }{2} ) \\ \\ x = {sin}^{ - 1} ( sin \: ( - \frac{\pi}{3} ) \\ \\ = - \frac{\pi}{3} \: \: \: belongs \: to \: [\frac{ - \pi}{2} ,\frac{\pi}{2}] \\

Thus there are two values of x ,these are π/3 ,-π/3
Similar questions