Math, asked by savarkar7876, 10 months ago

Solve the equation 8x^3-36 x^2-18x+81=0 the roots being in A.P.

Answers

Answered by mysticd
11

 Given \: equation ,

8x^3-36 x^2-18x+81=0

 Let \: the \: roots \: be \: (a-d) , a , (a+d)

 i )Sum \:of \: roots = \frac{- Coefficient \:of \:x^{2}}{Coefficient \:of \: x^{3}}

 \implies a-d+a+a+d = \frac{-(-36)}{8}

 \implies 3a = \frac{9}{2}

 \implies a = \frac{9}{3\times 2}

 \implies a = \frac{3}{2} \: --(1)

 ii ) Product \:of \: roots = \frac{- Constant \:term}{Coefficient \:of \: x^{3}}

 \implies (a-d)\times a\times (a+d) = \frac{-81}{8}

 \implies a(a^{2} - d^{2}) = \frac{-81}{8}

 \implies \frac{3}{2} [\Big(\frac{3}{2}\Big)^{2} -d^{2}] = \frac{-81}{8}

 \implies \frac{9}{4} - d^{2} = \frac{-27}{4} \times

 \implies  - d^{2} = \frac{-27}{4} - \frac{9}{4}

 \implies  - d^{2} = \frac{-36}{4}

 \implies d^{2} = 9

 \implies d = \pm 3

Therefore.,

 \red{ Required \: roots \:are }

 If \: a = \frac{3}{2} \: and \: d = 3

 i )a - d

= \frac{3}{2} - 3

 = \frac{3-6}{2}

 = \frac{-3}{2}

 ii ) a = \frac{3}{2}

 i )a - d

= \frac{3}{2} + 3

 = \frac{3+6}{2}

 = \frac{9}{2}

 \green { Roots \: \frac{-3}{2} , \frac{3}{2}, \frac{9}{2}}

Or

 \red{ Required \: roots \:are }

 If \: a = \frac{3}{2} \: and \: d = - 3

 \green { Roots \: \frac{9}{2} , \frac{3}{2}, \frac{-3}{2}}

•••♪

Answered by manjushachandarlapat
0

let the roots be a-d,a,a+d

sum of roots a-d+a+a+d=36/8

3a=36/8

a=3/2

product of roots=a(a^2-b^2) =-81/8

3/2(3/2^2-d^2)=-81/8

9/4-d^2=-27/4

-d^2=-36/4

d^2=9

d=+3 or-3

a=3/2,d=3

a-d=-3/2

2.a=3/2,d=-3

a-d=9/2

roots are -3/2,3/2,9/2

Similar questions