Math, asked by snykiran, 10 months ago

solve the equation and check your answer:
\frac{2x}{3} +1=\frac{7x}{15} +3

Answers

Answered by Cynefin
6

━━━━━━━━━━━━━━━━━━━━

Answer:

♦️ To solve:

  • \Large{ \rm{ \frac{2x}{3} + 1 =  \frac{7x}{15} + 3}}

We have to find the value of x

━━━━━━━━━━━━━━━━━━━━

Explanation of Q.

The above question is a equation in one variable, Here we can see that the variable is x. Next, we can observe that this is a linear equation i.e. Highest degree = 1

How? Here in LHS and RHS, the coefficient of x are 2/3 and 7/15 which are not equal to each other, thus they don't cancel each other. Thus, we will eventually get a equation i.e. a linear equation in one variable.

━━━━━━━━━━━━━━━

Hence, we can solve this by just equating LHS and RHS and finding the value of x.

━━━━━━━━━━━━━━━━━━━━

Solution:

Solving the equation,

\large{ \rm{ \rightarrow \:  \frac{2x}{3} + 1 =  \frac{7x}{15} + 3}}

Shifting 7x/15 to the left hand side and 1 to the Right hand side,

\large{ \rm{ \rightarrow \:  \frac{2x}{3}  -  \frac{7x}{15}  = 3 - 1}} \\  \\ \large{ \rm{ \rightarrow \:  \frac{10x - 7x}{15}  = 2}} \\  \\\large{ \rm{ \rightarrow \:  \frac{3x}{15}  = 2}} \\  \\\large{ \rm{ \rightarrow \: x =  \cancel{ \frac{2 \times 15}{3}}}} \\  \\ \large{ \rm{ \rightarrow \: x =  \boxed{ \red{ \rm{10}}}}}

\large{ \rm{ \therefore{ \underline{  \purple{ \: The \: required \: value \: of \: x = 10}}}}}

━━━━━━━━━━━━━━━━━━━━

Verification:

Putting the value of x in LHS and RHS,

\large{ \rm{ \rightarrow \:  \frac{2(10)}{3} + 1 =  \frac{7(10)}{15}   + 3}} \\  \\\large{ \rm{ \rightarrow \:  \frac{20}{3}   + 1 =  \frac{70}{15} + 3}} \\  \\  \large{ \rm{ \rightarrow \:  \frac{20 + 3}{3} =  \frac{70 + 45}{15} }} \\  \\ \large{ \rm{ \rightarrow \:  \frac{23}{3} =   \cancel{\frac{115}{15}} \: \:  \:   \frac{23}{3}   }}  \\  \\ \large{ \rm{ \rightarrow \:  \pink{LHS = RHS}}} \\  \\  \large{ \therefore{ \underline{ \rm{ \purple{Hence \: verified....!!}}}}}

━━━━━━━━━━━━━━━━━━━━

Answered by anshu24497
2

 \huge\bf{ \color{pink}{{Answer}}}

TO SOLVE :

\frac{2x}{3} +1=\frac{7x}{15} +3

We have to find the value of x.

EXPLANATION  OF QUESTION :

The above question is a equation in one variable, Here we can see that the variable is x.

Next, we can observe that this is a linear equation i.e. Highest degree = 1

HOW ?

Here in LHS and RHS, the coefficient of x are 2/3 and 7/15 which are not equal to each other, thus they don't cancel each other.

Thus, we will eventually get a equation i.e. a linear equation in one variable.

Hence, we can solve this by just equating LHS and RHS and finding the value of x.

SOLUTION :

SOLVING THE EQUATION :

 \implies\frac{2x}{3} +1=\frac{7x}{15} +3

Shifting 7x/15 to the left hand side and 1 to the Right hand side.

 \implies\frac{2x}{3}  -  \frac{7x}{15}  = 3 - 1

  \implies\frac{10x - 7x}{15}  = 2

 \implies \frac{3x}{15}  = 2

\implies \: x =  \cancel \frac{ 2 \times 15}{3} </p><p></p><p>

\implies x =  \fbox{10}

The required value for x = 10

VERIFICATION :

Putting the value of x in LHS and RHS.

 \implies \frac{2(10)}{3}  + 1 =  \frac{7(10)}{15}  + 3

 \implies \frac{20}{3}  + 1 =  \frac{70}{15}  + 3

 \implies \frac{20 + 3}{3}  = \frac{70 + 45}{15}

 \implies \frac{23}{3}  =  \cancel \frac{115}{15}   \:  \: \frac{23}{3}

 \implies  \bf{\color{gold}{LHS  = RHS}}

Hence Verified !

Similar questions