Solve the equation and write general solution: 2 sin² x + sin² 2x = 2
Answers
Answered by
1
Given that
2 sin² x + sin² 2x = 2
2 sin² x + (sin 2x)² = 2
2 sin² x + (2 sin x . cos x)² = 2
2 sin² x + 4 sin² x cos² x = 2
2 sin² x + 4 sin² x (1 - sin² x) = 2
2 sin² x + 4 sin² x - 4 sin^4 x = 2
6 sin² x - 4 sin^4 x = 2
- 4 sin^4 x + 6 sin² x = 2
4 sin^4 x - 6 sin² x = - 2
4 sin^4 x - 6 sin² x + 2 = 0
Let y = sin² x , so we have
4 y² - 6 y + 2 = 0
Dividing both sides by 2 , we get
2 y² - 3 y + 1 = 0
2 y² - 2 y - y + 1 = 0
2 y (y - 1) - 1(y -1) = 0
(y-1)(2y-1) = 0
y - 1 = 0 and 2y -1 = 0
y = 1 and y = 1/2
⇒
sin² x = 1 and sin² x = 1/2
sin x = 1 , sin x = -1 , sin x = 1/√2 , sin x = - 1/√2
For sin x = 1 :-
x = π/2
For sin x = - 1 :-
x = 3π/2
For sin x = 1/√2 :-
x = π/4 & x = 3π/4
For sin x = - 1/√2 :-
x = 5π/4 & x = 7π/4
Answered by
4
Solution :
2sin²x + sin² 2x = 2
=> 2sin²x + ( sin 2x )² - 2 = 0
=> 2sin²x + ( 2sinxcosx )² - 2 = 0
=> 2sin²x + 4sin²xcos²x - 2 = 0
=> 2sin²x + 4sin²xcos²x - 2 = 0
=> 2( 1 - cos²x ) + 4sin²xcos²x - 2 = 0
=> 2 - 2cos²x + 4sin²xcos²x - 2 = 0
=> -2cos²x + 4sin²xcos²x = 0
=> 2cos²x ( -1 + 2sin²x ) = 0
Therefore ,
2cos²x = 0 or -1 + 2sin²x = 0
cos² x = 0 or sin²x = 1/2
x = (2n+1)(π/2) or x = nπ±(π/4) , n € Z
••••
2sin²x + sin² 2x = 2
=> 2sin²x + ( sin 2x )² - 2 = 0
=> 2sin²x + ( 2sinxcosx )² - 2 = 0
=> 2sin²x + 4sin²xcos²x - 2 = 0
=> 2sin²x + 4sin²xcos²x - 2 = 0
=> 2( 1 - cos²x ) + 4sin²xcos²x - 2 = 0
=> 2 - 2cos²x + 4sin²xcos²x - 2 = 0
=> -2cos²x + 4sin²xcos²x = 0
=> 2cos²x ( -1 + 2sin²x ) = 0
Therefore ,
2cos²x = 0 or -1 + 2sin²x = 0
cos² x = 0 or sin²x = 1/2
x = (2n+1)(π/2) or x = nπ±(π/4) , n € Z
••••
Similar questions