Solve the equation and write general solution: 4 cos² θ + √3 = 2(√3 + 1) cos θ.
Answers
Answered by
0
Answer:
general solution of given equation is θ= ±π/3+2πk ,±π/6+2πk,for any integer k.
Step-by-step explanation:
Solve the equation and write general solution: 4 cos² θ + √3 = 2(√3 + 1) cos θ
4 cos² θ - 2(√3 + 1) cos θ +√3 =0
4 cos² θ - 2√3 cos θ -2 cos θ +√3 =0
2 cos θ(2 cos θ -√3)-1(2 cos θ -√3)=0
(2 cos θ -√3)(2 cos θ -1)=0
So
(2 cos θ -√3)=0
2 cos θ = √3
cos θ=√3/2
θ= cos⁻1( cos π/6)
θ= π/6
and
(2 cos θ -1)=0
cos θ=1/2
θ= cos⁻1( cos π/3)
θ= π/3
So general solution of given equation is θ= ±π/3+2πk ,±π/6+2πk,for any integer k.
Answered by
0
Solution :
Here I am using A instead of theta.
4cos²A + √3 = 2(√3 + 1 ) cosA
=> 4cos²A+√3 = 2√3 cosA + 2cosA
=> 4cos²A + √3 -2√3cosA - 2cosA = 0
=> 4cos²A-2cosA -2√3cosA + √3 = 0
=> 2cosA(2cosA-1) -√3( 2cosA-1) = 0
=> (2cosA - 1 )( 2cosA - √3 ) = 0
2cosA - 1 = 0 or 2cosA - √3 = 0
cosA = 1/2 or cosA = √3/2
A = 2nπ ± ( π/3 ) or A = 2nπ±(π/6) ,n€Z
•••••
=> 2cosA( 2cosA -1 )-√3( 2cosA + 2 )=0
Here I am using A instead of theta.
4cos²A + √3 = 2(√3 + 1 ) cosA
=> 4cos²A+√3 = 2√3 cosA + 2cosA
=> 4cos²A + √3 -2√3cosA - 2cosA = 0
=> 4cos²A-2cosA -2√3cosA + √3 = 0
=> 2cosA(2cosA-1) -√3( 2cosA-1) = 0
=> (2cosA - 1 )( 2cosA - √3 ) = 0
2cosA - 1 = 0 or 2cosA - √3 = 0
cosA = 1/2 or cosA = √3/2
A = 2nπ ± ( π/3 ) or A = 2nπ±(π/6) ,n€Z
•••••
=> 2cosA( 2cosA -1 )-√3( 2cosA + 2 )=0
Similar questions