Math, asked by ash413, 1 year ago

Solve the equation by complete square method 2x^2+10x+3=0

Answers

Answered by SohamMukho
4

Answer:


Step-by-step explanation:

2x² + 10x + 3=0

x²+5x+3/2=0. (Dividing by 2)

x²+5x=-3/2

x²+5x+(5/2)²=-3/2+(5/2)². (The coefficient of X should be divided by 2 and then it's square should be added to both sides)

(X +(5/2)²)=(-3/2) + 24/4=19/4 (here in the LHS we will take the x² and the (5/2)² together)

X+5/2=+-√19/2


X= √19-5/2 or -√19-5/2





Answered by creamiepie
3
Given,

2x^2 + 10x + 3 = 0

 \underline \bold{solution}


 \frac{ {2x}^{2} }{2}  +  \frac{10x}{2}  +  \frac{3}{2}  = 0 \\  \\  =  >  {x}^{2}  + 5x =  -  \frac{3}{2}  \\  \\  =  >  {x}^{2}  + 5x +  {(5 \times  \frac{1}{2} )}^{2}  =  \frac{ - 3}{2}   +  {(5 \times  \frac{1}{2} )}^{2}  \\  \\  =  >  {x}^{2}  + 5x +  ({ \frac{5}{2} )}^{2}  =  \frac{ - 3}{2}  +  \frac{25}{4}  \\  \\  =  >  {(x +  \frac{5}{2} )}^{2}  =  \frac{ - 6 + 25}{4}  \\  \\  =  >  {(x +  \frac{5}{2} )}^{2}  =  \frac{19}{4}  \\  \\  =  > x +  \frac{5}{2}  =  \sqrt{ \frac{19}{4} }  \\  \\  =  > x +  \frac{5}{2}  =  \frac{ \sqrt{19} }{2}  \\  \\  =  > x = ± \frac{ \sqrt{19} }{2}  -  \frac{5}{2}  \\  \\  \\  \\  \\  \\ x =  \frac{ \sqrt{19} }{2}  -  \frac{5}{2}  \\  \\  =  \frac{ \sqrt{19}  - 5}{2}  \\  \\  \\  \\ x =  \frac{ -  \sqrt{19} }{2}  -  \frac{5}{2}  \\  \\  =  \frac{ -  \sqrt{19} - 5 }{2}



 \huge \boxed{answer =  \frac{ \sqrt{19}  + 5}{2} \: and \frac{ -  \sqrt{19}  - 5}{2}  }
Similar questions