Math, asked by sarthak2306jain, 9 months ago

Solve the equation by substitution or elemilation method

Attachments:

Answers

Answered by abhijeet6574
0

 \frac{2}{ \sqrt{x} }  +  \frac{3}{ \sqrt{y} }  = 2  \\  \frac{4}{ \sqrt{x} }  -  \frac{9}{ \sqrt{y} } =  - 1 \\  let \:  \frac{1}{ \sqrt{x} }  = a \: and \:  \frac{1}{ \sqrt{y} }  = b \\  = 2a + 3b = 2....................(1) \\ =  4a - 9b =  - 1....................(2) \\ by \: elimination \: method \\ 2(2a + 3b = 2) \\ 4a - 9b =  - 1 \\  = 4a + 6b = 4 \\  \:  \:  \:  \: 4a - 9b =  - 1  \\  (- ) \:  \:  \:  (+ ) \:  \:  \:  \:  \:  \: ( + )\\ ......................... \\ 15b = 5 \\ b =  \frac{5}{15}  \\ b =  \frac{1}{3}  \\  \\ putting \: value \: of \: b \: in \: eq(1) \\ 2a + 3( \frac{1}{3} ) = 2 \\  = 2a + 1 = 2 \\ a =  \frac{1}{2}  \\ a =  \frac{1}{ \sqrt{x} }  =  \frac{1}{2}  \\  =  \sqrt{x}  = 2 \\ x =  {2}^{2}  = 4 \\ b =  \frac{1}{ \sqrt{y} }  =  \frac{1}{3}  \\  =  \sqrt{y}  = 3 \\ y =  {3}^{2}  = 9

HENCE SOLVED......

HOPE THIS HELPS MATE

Similar questions