solve the equation for theta:
cos²theta÷[cot²theta-cos²theta]=3
Answers
Answered by
12
(cos x)^2/{(cot x)^2 - (cos x)^2} = 3
(cos x)^2/{{(cos x)^2/(sin x)^2} - (cos x)^2} = 3
(cos x)^2 × (sin x)^2/(cos x)^2 - (cos x)^2 × (sin x)^2 = 3
(sin x)^2/ 1- (sin x)^2 = 3
(sin x)^2/(cos x)^2=3
(tan x)^2 = 3
tan x = √3
x = 60°
(cos x)^2/{{(cos x)^2/(sin x)^2} - (cos x)^2} = 3
(cos x)^2 × (sin x)^2/(cos x)^2 - (cos x)^2 × (sin x)^2 = 3
(sin x)^2/ 1- (sin x)^2 = 3
(sin x)^2/(cos x)^2=3
(tan x)^2 = 3
tan x = √3
x = 60°
Similar questions