Solve the equation for x :
sin-'x + sin (1-x) = cos x see the picture
Attachments:
Answers
Answered by
1
MySolution:: Given
sin−1(x)+sin−1(1−x)=cos−1(x)
sin−1(1−x)=cos−1(x)−sin−1(x)⇒(1−x)=sin[cos−1(x)−sin−1(x)]
Using
sin−1(x)+cos−1(x)=π2
So
(1−x)=sin[π2−2sin−1(x)]=cos(2sin−1(x))=cos(cos−1(1−2x2))
Using
2sin−1(x)=cos−1(1−2x2)
So
(1−x)=(1−2x2)⇒2x2−x=0
So
2x2−x=0⇒x=0,x=12
Now Put into Original Equation we get x=12 and
x=0 satisfy the Given equation
Answered by
1
sin−1(x)+sin−1(1−x)=cos−1(x)
sin−1(1−x)=cos−1(x)−sin−1(x)⇒(1−x)=sin[cos−1(x)−sin−1(x)]
Using
sin−1(x)+cos−1(x)=π2
So
(1−x)=sin[π2−2sin−1(x)]=cos(2sin−1(x))=cos(cos−1(1−2x2))
Using
2sin−1(x)=cos−1(1−2x2)
So
(1−x)=(1−2x2)⇒2x2−x=0
So
2x2−x=0⇒x=0,x=12
now Put into Original Equation we get x=12 and
x=0 satisfy the Given equation
Similar questions