Math, asked by Rosean, 1 month ago

solve the equation please answer​

Attachments:

Answers

Answered by dsk75
1

Answer:

x = a² and y = b²

Step-by-step explanation:

    (b²/a)x + (a²/b)y = ab(a+b)           × (1)

    (b²)x    + (a²)y    = 2a²b²              × (1/a)

--------------------------------------------------------------

⇒  (b²/a)x + (a²/b)y = ab(a+b)  

(-)  (b²/a)x + (a)y   = 2ab²

---------------------------------------------

⇒   (a²/b - a)y     =  ab[a + b - 2b]

⇒   (a² - ab)y      =  ab²[a-b]

⇒   a(a-b)y         =  a×b²×[a-b]

⇒   y  =  b²

substitute the value of y in equation 2

⇒ b²x  +  a²(b²)  =  2a²b²

⇒ b²x = a²b²

x  =  a²

--------------------------------------------------------------------------------------------------------

VERIFICATION

  • For equation 1

        R.H.S = ab(a+b)

        L.H.S = (b²/a)x + (a²/b)y

      substitute the values of x and y

       ⇒ L.H.S = (b²/a)(a²) + (a²/b)(b²)  

                     = b²a + a²b

                     = ab(a+b) = R.H.S

       ∵ L.H.S = R.H.S

       ∴ x = a² and y = b²

  • For equation 2

        R.H.S = 2a²b²

        L.H.S = (b²)x + (a²)y

      substitute the values of x and y

       ⇒ L.H.S = (b²)(a²) + (a²)(b²)  

                      = 2a²b² = R.H.S

       ∵ L.H.S = R.H.S

       ∴ x = a² and y = b²

-------------------------------------------------------------------------------------------------------

PLEASE MAKE MY ANSWER AS BRAINLIEST

Similar questions